test_modeling_transfo_xl.py 21.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
import copy
thomwolf's avatar
thomwolf committed
16
import random
17
import unittest
thomwolf's avatar
thomwolf committed
18

19
from transformers import is_torch_available
thomwolf's avatar
thomwolf committed
20

21
from .test_configuration_common import ConfigTester
22
from .test_modeling_common import ModelTesterMixin, ids_tensor
23
from .utils import require_multigpu, require_torch, slow, torch_device
Aymeric Augustin's avatar
Aymeric Augustin committed
24
25


26
if is_torch_available():
thomwolf's avatar
thomwolf committed
27
    import torch
28
    from transformers import TransfoXLConfig, TransfoXLModel, TransfoXLLMHeadModel
29
    from transformers.modeling_transfo_xl import TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
30

31
32

@require_torch
33
class TransfoXLModelTest(ModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
34

thomwolf's avatar
thomwolf committed
35
    all_model_classes = (TransfoXLModel, TransfoXLLMHeadModel) if is_torch_available() else ()
36
    all_generative_model_classes = (TransfoXLLMHeadModel,) if is_torch_available() else ()
thomwolf's avatar
thomwolf committed
37
38
    test_pruning = False
    test_torchscript = False
39
    test_resize_embeddings = True
thomwolf's avatar
thomwolf committed
40

thomwolf's avatar
thomwolf committed
41
    class TransfoXLModelTester(object):
42
43
44
        def __init__(
            self,
            parent,
45
            batch_size=14,
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
            seq_length=7,
            mem_len=30,
            clamp_len=15,
            is_training=True,
            use_labels=True,
            vocab_size=99,
            cutoffs=[10, 50, 80],
            hidden_size=32,
            d_embed=32,
            num_attention_heads=4,
            d_head=8,
            d_inner=128,
            div_val=2,
            num_hidden_layers=5,
            scope=None,
            seed=1,
62
            eos_token_id=0,
63
        ):
thomwolf's avatar
thomwolf committed
64
65
66
67
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.mem_len = mem_len
thomwolf's avatar
thomwolf committed
68
            self.key_length = seq_length + mem_len
thomwolf's avatar
thomwolf committed
69
70
71
72
73
            self.clamp_len = clamp_len
            self.is_training = is_training
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.cutoffs = cutoffs
thomwolf's avatar
thomwolf committed
74
            self.hidden_size = hidden_size
thomwolf's avatar
thomwolf committed
75
            self.d_embed = d_embed
thomwolf's avatar
thomwolf committed
76
            self.num_attention_heads = num_attention_heads
thomwolf's avatar
thomwolf committed
77
78
79
            self.d_head = d_head
            self.d_inner = d_inner
            self.div_val = div_val
thomwolf's avatar
thomwolf committed
80
            self.num_hidden_layers = num_hidden_layers
thomwolf's avatar
thomwolf committed
81
82
            self.scope = scope
            self.seed = seed
83
            self.eos_token_id = eos_token_id
thomwolf's avatar
thomwolf committed
84
85

        def prepare_config_and_inputs(self):
thomwolf's avatar
thomwolf committed
86
87
            input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
            input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
thomwolf's avatar
thomwolf committed
88
89
90

            lm_labels = None
            if self.use_labels:
thomwolf's avatar
thomwolf committed
91
                lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
thomwolf's avatar
thomwolf committed
92
93

            config = TransfoXLConfig(
thomwolf's avatar
thomwolf committed
94
                vocab_size=self.vocab_size,
thomwolf's avatar
thomwolf committed
95
96
97
                mem_len=self.mem_len,
                clamp_len=self.clamp_len,
                cutoffs=self.cutoffs,
thomwolf's avatar
thomwolf committed
98
                d_model=self.hidden_size,
thomwolf's avatar
thomwolf committed
99
                d_embed=self.d_embed,
thomwolf's avatar
thomwolf committed
100
                n_head=self.num_attention_heads,
thomwolf's avatar
thomwolf committed
101
102
103
                d_head=self.d_head,
                d_inner=self.d_inner,
                div_val=self.div_val,
104
                n_layer=self.num_hidden_layers,
105
                eos_token_id=self.eos_token_id,
106
            )
thomwolf's avatar
thomwolf committed
107
108
109
110
111
112
113
114
115

            return (config, input_ids_1, input_ids_2, lm_labels)

        def set_seed(self):
            random.seed(self.seed)
            torch.manual_seed(self.seed)

        def create_transfo_xl_model(self, config, input_ids_1, input_ids_2, lm_labels):
            model = TransfoXLModel(config)
116
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
            model.eval()

            hidden_states_1, mems_1 = model(input_ids_1)
            hidden_states_2, mems_2 = model(input_ids_2, mems_1)
            outputs = {
                "hidden_states_1": hidden_states_1,
                "mems_1": mems_1,
                "hidden_states_2": hidden_states_2,
                "mems_2": mems_2,
            }
            return outputs

        def check_transfo_xl_model_output(self, result):
            self.parent.assertListEqual(
131
                list(result["hidden_states_1"].size()), [self.batch_size, self.seq_length, self.hidden_size],
132
            )
133
            self.parent.assertListEqual(
134
                list(result["hidden_states_2"].size()), [self.batch_size, self.seq_length, self.hidden_size],
135
            )
thomwolf's avatar
thomwolf committed
136
137
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_1"]),
138
139
                [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
thomwolf's avatar
thomwolf committed
140
141
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_2"]),
142
143
                [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
thomwolf's avatar
thomwolf committed
144
145
146

        def create_transfo_xl_lm_head(self, config, input_ids_1, input_ids_2, lm_labels):
            model = TransfoXLLMHeadModel(config)
147
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
148
149
            model.eval()

thomwolf's avatar
thomwolf committed
150
151
152
153
            lm_logits_1, mems_1 = model(input_ids_1)
            loss_1, _, mems_1 = model(input_ids_1, labels=lm_labels)
            lm_logits_2, mems_2 = model(input_ids_2, mems=mems_1)
            loss_2, _, mems_2 = model(input_ids_2, labels=lm_labels, mems=mems_1)
thomwolf's avatar
thomwolf committed
154
155
156

            outputs = {
                "loss_1": loss_1,
thomwolf's avatar
thomwolf committed
157
                "mems_1": mems_1,
thomwolf's avatar
thomwolf committed
158
159
                "lm_logits_1": lm_logits_1,
                "loss_2": loss_2,
thomwolf's avatar
thomwolf committed
160
                "mems_2": mems_2,
thomwolf's avatar
thomwolf committed
161
162
163
164
165
                "lm_logits_2": lm_logits_2,
            }
            return outputs

        def check_transfo_xl_lm_head_output(self, result):
166
            self.parent.assertListEqual(list(result["loss_1"].size()), [self.batch_size, self.seq_length - 1])
thomwolf's avatar
thomwolf committed
167
            self.parent.assertListEqual(
168
                list(result["lm_logits_1"].size()), [self.batch_size, self.seq_length, self.vocab_size],
169
            )
thomwolf's avatar
thomwolf committed
170
            self.parent.assertListEqual(
thomwolf's avatar
thomwolf committed
171
                list(list(mem.size()) for mem in result["mems_1"]),
172
173
                [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
thomwolf's avatar
thomwolf committed
174

175
            self.parent.assertListEqual(list(result["loss_2"].size()), [self.batch_size, self.seq_length - 1])
thomwolf's avatar
thomwolf committed
176
            self.parent.assertListEqual(
177
                list(result["lm_logits_2"].size()), [self.batch_size, self.seq_length, self.vocab_size],
178
            )
thomwolf's avatar
thomwolf committed
179
            self.parent.assertListEqual(
thomwolf's avatar
thomwolf committed
180
                list(list(mem.size()) for mem in result["mems_2"]),
181
182
                [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
thomwolf's avatar
thomwolf committed
183

thomwolf's avatar
thomwolf committed
184
185
186
        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
            (config, input_ids_1, input_ids_2, lm_labels) = config_and_inputs
187
            inputs_dict = {"input_ids": input_ids_1}
thomwolf's avatar
thomwolf committed
188
189
            return config, inputs_dict

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
    def check_cutoffs_and_n_token(
        self, copied_cutoffs, layer, model_embed, model, model_class, resized_value, vocab_size
    ):
        # Check that the cutoffs were modified accordingly
        for i in range(len(copied_cutoffs)):
            if i < layer:
                self.assertEqual(model_embed.cutoffs[i], copied_cutoffs[i])
                if model_class == TransfoXLLMHeadModel:
                    self.assertEqual(model.crit.cutoffs[i], copied_cutoffs[i])
                if i < len(model.config.cutoffs):
                    self.assertEqual(model.config.cutoffs[i], copied_cutoffs[i])
            else:
                self.assertEqual(model_embed.cutoffs[i], copied_cutoffs[i] + resized_value)
                if model_class == TransfoXLLMHeadModel:
                    self.assertEqual(model.crit.cutoffs[i], copied_cutoffs[i] + resized_value)
                if i < len(model.config.cutoffs):
                    self.assertEqual(model.config.cutoffs[i], copied_cutoffs[i] + resized_value)

        self.assertEqual(model_embed.n_token, vocab_size + resized_value)
        if model_class == TransfoXLLMHeadModel:
            self.assertEqual(model.crit.n_token, vocab_size + resized_value)

thomwolf's avatar
thomwolf committed
212
213
214
    def setUp(self):
        self.model_tester = TransfoXLModelTest.TransfoXLModelTester(self)
        self.config_tester = ConfigTester(self, config_class=TransfoXLConfig, d_embed=37)
thomwolf's avatar
thomwolf committed
215

thomwolf's avatar
thomwolf committed
216
    def test_config(self):
thomwolf's avatar
thomwolf committed
217
218
219
220
221
222
223
224
225
226
227
228
229
        self.config_tester.run_common_tests()

    def test_transfo_xl_model(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        output_result = self.model_tester.create_transfo_xl_model(*config_and_inputs)
        self.model_tester.check_transfo_xl_model_output(output_result)

    def test_transfo_xl_lm_head(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        output_result = self.model_tester.create_transfo_xl_lm_head(*config_and_inputs)
        self.model_tester.check_transfo_xl_lm_head_output(output_result)
230

231
232
233
234
235
    @require_multigpu
    def test_multigpu_data_parallel_forward(self):
        # Opt-out of this test.
        pass

236
    @slow
237
    def test_model_from_pretrained(self):
238
        for model_name in TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
239
            model = TransfoXLModel.from_pretrained(model_name)
240
            self.assertIsNotNone(model)
241

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
    def test_resize_tokens_embeddings(self):
        (original_config, inputs_dict) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = [emb.weight.clone() for emb in model_embed.emb_layers]
            # Retrieve the cutoffs and copy them
            copied_cutoffs = copy.copy(model_embed.cutoffs)

            test_layers = [x for x in range(config.div_val)]
            for layer in test_layers:
                # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
                model_embed = model.resize_token_embeddings(model_vocab_size + 10, layer)
                self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
                # Check that it actually resizes the embeddings matrix
                self.assertEqual(model_embed.emb_layers[layer].weight.shape[0], cloned_embeddings[layer].shape[0] + 10)
                # Check that the cutoffs were modified accordingly
                self.check_cutoffs_and_n_token(
                    copied_cutoffs, layer, model_embed, model, model_class, 10, model_vocab_size
                )

                # Check that the model can still do a forward pass successfully (every parameter should be resized)
                model(**inputs_dict)

                # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
                model_embed = model.resize_token_embeddings(model_vocab_size - 5, layer)
                self.assertEqual(model.config.vocab_size, model_vocab_size - 5)
                # Check that it actually resizes the embeddings matrix
                self.assertEqual(model_embed.emb_layers[layer].weight.shape[0], cloned_embeddings[layer].shape[0] - 5)
                # Check that the cutoffs were modified accordingly
                self.check_cutoffs_and_n_token(
                    copied_cutoffs, layer, model_embed, model, model_class, -5, model_vocab_size
                )

                # Check that the model can still do a forward pass successfully (every parameter should be resized)
                # Input ids should be clamped to the maximum size of the vocabulary
                inputs_dict["input_ids"].clamp_(max=model_vocab_size - 5 - 1)
                model(**inputs_dict)

                # Check that adding and removing tokens has not modified the first part of the embedding matrix.
                models_equal = True
                for p1, p2 in zip(cloned_embeddings[layer], model_embed.emb_layers[layer].weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

                self.assertTrue(models_equal)

                # Reset model embeddings to original size
                model.resize_token_embeddings(model_vocab_size, layer)
                self.assertEqual(model_vocab_size, model.config.vocab_size)
                self.assertEqual(model_embed.emb_layers[layer].weight.shape[0], cloned_embeddings[layer].shape[0])

305
306
307
308
309

class TransfoXLModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_transfo_xl_wt103(self):
        model = TransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103")
310
        model.to(torch_device)
patrickvonplaten's avatar
patrickvonplaten committed
311
        input_ids = torch.tensor(
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
            [
                [
                    33,
                    1297,
                    2,
                    1,
                    1009,
                    4,
                    1109,
                    11739,
                    4762,
                    358,
                    5,
                    25,
                    245,
                    22,
                    1706,
                    17,
                    20098,
                    5,
                    3215,
                    21,
                    37,
                    1110,
                    3,
                    13,
                    1041,
                    4,
                    24,
                    603,
                    490,
                    2,
                    71477,
                    20098,
                    104447,
                    2,
                    20961,
                    1,
                    2604,
                    4,
                    1,
                    329,
                    3,
                    6224,
                    831,
                    16002,
                    2,
                    8,
                    603,
                    78967,
                    29546,
                    23,
                    803,
                    20,
                    25,
                    416,
                    5,
                    8,
                    232,
                    4,
                    277,
                    6,
                    1855,
                    4601,
                    3,
                    29546,
                    54,
                    8,
                    3609,
                    5,
                    57211,
                    49,
                    4,
                    1,
                    277,
                    18,
                    8,
                    1755,
                    15691,
                    3,
                    341,
                    25,
                    416,
                    693,
                    42573,
                    71,
                    17,
                    401,
                    94,
                    31,
                    17919,
                    2,
                    29546,
                    7873,
                    18,
                    1,
                    435,
                    23,
                    11011,
                    755,
                    5,
                    5167,
                    3,
                    7983,
                    98,
                    84,
                    2,
                    29546,
                    3267,
                    8,
                    3609,
                    4,
                    1,
                    4865,
                    1075,
                    2,
                    6087,
                    71,
                    6,
                    346,
                    8,
                    5854,
                    3,
                    29546,
                    824,
                    1400,
                    1868,
                    2,
                    19,
                    160,
                    2,
                    311,
                    8,
                    5496,
                    2,
                    20920,
                    17,
                    25,
                    15097,
                    3,
                    24,
                    24,
                    0,
                ]
patrickvonplaten's avatar
patrickvonplaten committed
456
457
458
459
            ],
            dtype=torch.long,
            device=torch_device,
        )
460
461
462
463
464
465
466
467
468
        #  In 1991 , the remains of Russian Tsar Nicholas II and his family
        #  ( except for Alexei and Maria ) are discovered .
        #  The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the
        #  remainder of the story . 1883 Western Siberia ,
        #  a young Grigori Rasputin is asked by his father and a group of men to perform magic .
        #  Rasputin has a vision and denounces one of the men as a horse thief . Although his
        #  father initially slaps him for making such an accusation , Rasputin watches as the
        #  man is chased outside and beaten . Twenty years later , Rasputin sees a vision of
        #  the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous ,
patrickvonplaten's avatar
patrickvonplaten committed
469

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
        #  with people , even a bishop , begging for his blessing . <eod> </s> <eos>

        expected_output_ids = [
            33,
            1297,
            2,
            1,
            1009,
            4,
            1109,
            11739,
            4762,
            358,
            5,
            25,
            245,
            22,
            1706,
            17,
            20098,
            5,
            3215,
            21,
            37,
            1110,
            3,
            13,
            1041,
            4,
            24,
            603,
            490,
            2,
            71477,
            20098,
            104447,
            2,
            20961,
            1,
            2604,
            4,
            1,
            329,
            3,
            6224,
            831,
            16002,
            2,
            8,
            603,
            78967,
            29546,
            23,
            803,
            20,
            25,
            416,
            5,
            8,
            232,
            4,
            277,
            6,
            1855,
            4601,
            3,
            29546,
            54,
            8,
            3609,
            5,
            57211,
            49,
            4,
            1,
            277,
            18,
            8,
            1755,
            15691,
            3,
            341,
            25,
            416,
            693,
            42573,
            71,
            17,
            401,
            94,
            31,
            17919,
            2,
            29546,
            7873,
            18,
            1,
            435,
            23,
            11011,
            755,
            5,
            5167,
            3,
            7983,
            98,
            84,
            2,
            29546,
            3267,
            8,
            3609,
            4,
            1,
            4865,
            1075,
            2,
            6087,
            71,
            6,
            346,
            8,
            5854,
            3,
            29546,
            824,
            1400,
            1868,
            2,
            19,
            160,
            2,
            311,
            8,
            5496,
            2,
            20920,
            17,
            25,
            15097,
            3,
            24,
            24,
            0,
patrickvonplaten's avatar
patrickvonplaten committed
614
            33,
615
            1,
patrickvonplaten's avatar
patrickvonplaten committed
616
617
            1857,
            2,
618
619
620
621
622
623
624
625
626
627
628
629
630
            1,
            1009,
            4,
            1109,
            11739,
            4762,
            358,
            5,
            25,
            245,
            28,
            1110,
            3,
patrickvonplaten's avatar
patrickvonplaten committed
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
            13,
            1041,
            4,
            24,
            603,
            490,
            2,
            71477,
            20098,
            104447,
            2,
            20961,
            1,
            2604,
            4,
            1,
            329,
648
649
650
651
652
653
654
655
656
657
658
659
660
            3,
            0,
        ]
        #  In 1991, the remains of Russian Tsar Nicholas II and his family (
        #  except for Alexei and Maria ) are discovered. The voice of young son,
        #  Tsarevich Alexei Nikolaevich, narrates the remainder of the story.
        #  1883 Western Siberia, a young Grigori Rasputin is asked by his father
        #  and a group of men to perform magic. Rasputin has a vision and
        #  denounces one of the men as a horse thief. Although his father initially
        #  slaps him for making such an accusation, Rasputin watches as the man
        #  is chased outside and beaten. Twenty years later, Rasputin sees a vision
        #  of the Virgin Mary, prompting him to become a priest.
        #  Rasputin quickly becomes famous, with people, even a bishop, begging for
patrickvonplaten's avatar
patrickvonplaten committed
661
662
663
        #  his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar
        # Nicholas II and his family were discovered. The voice of <unk> young son,
        # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos>
664

patrickvonplaten's avatar
patrickvonplaten committed
665
        output_ids = model.generate(input_ids, max_length=200, do_sample=False)
666
        self.assertListEqual(output_ids[0].tolist(), expected_output_ids)