test_tokenization_fast.py 42.9 KB
Newer Older
1
import logging
2
import unittest
Funtowicz Morgan's avatar
Funtowicz Morgan committed
3
4
from collections import namedtuple
from itertools import takewhile
5
6
7
8
9
10
11
12
13
14
15
16
17

from transformers import (
    BertTokenizer,
    BertTokenizerFast,
    DistilBertTokenizer,
    GPT2Tokenizer,
    GPT2TokenizerFast,
    OpenAIGPTTokenizer,
    PreTrainedTokenizer,
    RobertaTokenizer,
    TransfoXLTokenizer,
    is_torch_available,
)
18
from transformers.testing_utils import get_tests_dir, require_torch
19
20
21
22
23
24
from transformers.tokenization_distilbert import DistilBertTokenizerFast
from transformers.tokenization_openai import OpenAIGPTTokenizerFast
from transformers.tokenization_roberta import RobertaTokenizerFast
from transformers.tokenization_transfo_xl import TransfoXLTokenizerFast


25
26
logger = logging.getLogger(__name__)

Funtowicz Morgan's avatar
Funtowicz Morgan committed
27
NON_ENGLISH_TAGS = ["chinese", "dutch", "french", "finnish", "german", "multilingual"]
28
Tokenizer = namedtuple("Tokenizer", ["name", "rust_cls", "python_cls", "vocab_key", "filter", "kwargs"])
Funtowicz Morgan's avatar
Funtowicz Morgan committed
29

30

Funtowicz Morgan's avatar
Funtowicz Morgan committed
31
32
33
def filter_non_english(_: Tokenizer, pretrained_name: str):
    """ Filter all the model for non-english language """
    return not any([lang in pretrained_name for lang in NON_ENGLISH_TAGS])
34
35


Funtowicz Morgan's avatar
Funtowicz Morgan committed
36
37
def filter_roberta_detectors(_: Tokenizer, pretrained_name: str):
    return "detector" not in pretrained_name
38
39


Funtowicz Morgan's avatar
Funtowicz Morgan committed
40
class CommonFastTokenizerTest(unittest.TestCase):
41

Funtowicz Morgan's avatar
Funtowicz Morgan committed
42
43
44
    TOKENIZERS_CLASSES = frozenset([])

    def setUp(self) -> None:
45
        with open(f"{get_tests_dir()}/fixtures/sample_text.txt", encoding="utf-8") as f_data:
Funtowicz Morgan's avatar
Funtowicz Morgan committed
46
            self._data = f_data.read().replace("\n\n", "\n").strip()
47

Funtowicz Morgan's avatar
Funtowicz Morgan committed
48
49
50
51
52
53
54
55
56
    def test_all_tokenizers(self):
        for tok_case in self.TOKENIZERS_CLASSES:
            for pretrained_name in tok_case.python_cls.pretrained_vocab_files_map[tok_case.vocab_key].keys():

                # Tokenizer.filter makes it possible to filter which Tokenizer to case based on all the
                # information available in Tokenizer (name, rust class, python class, vocab key name)
                if tok_case.filter is None or (
                    tok_case.filter is not None and tok_case.filter(tok_case, pretrained_name)
                ):
57
                    kwargs = dict(t for t in tok_case.kwargs) if tok_case.kwargs else {}
Funtowicz Morgan's avatar
Funtowicz Morgan committed
58
                    with self.subTest("{} ({})".format(tok_case.name, pretrained_name)):
59
60
                        tokenizer_r = tok_case.rust_cls.from_pretrained(pretrained_name, **kwargs)
                        tokenizer_p = tok_case.python_cls.from_pretrained(pretrained_name, **kwargs)
Funtowicz Morgan's avatar
Funtowicz Morgan committed
61

62
                        self.fast_align_python(tokenizer_r, tokenizer_p, tok_case, pretrained_name)
Funtowicz Morgan's avatar
Funtowicz Morgan committed
63
64
                        self.fast_only(tokenizer_r)

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    def test_pretokenized_tokenizers(self):
        for tok_case in self.TOKENIZERS_CLASSES:
            for pretrained_name in tok_case.python_cls.pretrained_vocab_files_map[tok_case.vocab_key].keys():

                # Tokenizer.filter makes it possible to filter which Tokenizer to case based on all the
                # information available in Tokenizer (name, rust class, python class, vocab key name)
                if tok_case.filter is None or (
                    tok_case.filter is not None and tok_case.filter(tok_case, pretrained_name)
                ):
                    with self.subTest("{} ({})".format(tok_case.name, pretrained_name)):
                        tokenizer_r = tok_case.rust_cls.from_pretrained(pretrained_name, add_prefix_space=True)
                        tokenizer_p = tok_case.python_cls.from_pretrained(pretrained_name, add_prefix_space=True)

                        self.assert_pretokenized_inputs(tokenizer_r, tokenizer_p)

80
    def fast_align_python(self, tokenizer_r, tokenizer_p, tok_case, pretrained_name):
Funtowicz Morgan's avatar
Funtowicz Morgan committed
81
82
83
84
85
86
87
88
89
90
91
        # Check is_fast is set correctly
        self.assertFalse(tokenizer_p.is_fast)
        self.assertTrue(tokenizer_r.is_fast)

        # Check that Rust and Python align
        self.assert_tokenization_python_rust_equals(tokenizer_r, tokenizer_p)
        self.assert_num_special_tokens_to_add_equal(tokenizer_r, tokenizer_p)
        self.assert_max_length_equal(tokenizer_r, tokenizer_p)
        self.assert_special_tokens_map_equal(tokenizer_r, tokenizer_p)
        self.assert_embeded_special_tokens(tokenizer_r, tokenizer_p)
        self.assert_padding(tokenizer_r, tokenizer_p)
92
        self.assert_create_token_type_ids(tokenizer_r, tokenizer_p)
93
        self.assert_prepare_for_model(tokenizer_r, tokenizer_p)
Funtowicz Morgan's avatar
Funtowicz Morgan committed
94
95
96
97
98
99
100
101
102
103
104

    def fast_only(self, tokenizer_r):
        # Ensure None raise an error
        self.assertRaises(ValueError, tokenizer_r.tokenize, None)
        self.assertRaises(ValueError, tokenizer_r.encode, None)
        self.assertRaises(ValueError, tokenizer_r.encode_plus, None)
        self.assertRaises(ValueError, tokenizer_r.batch_encode_plus, None)

        self.assert_add_tokens(tokenizer_r)
        self.assert_offsets_mapping(tokenizer_r)
        self.assert_add_special_tokens(tokenizer_r)
105
        self.assert_alignement_methods(tokenizer_r)
106
        self.assert_batch_encode_dynamic_overflowing(tokenizer_r)
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

    def assert_alignement_methods(self, tokenizer_r):
        words = ["Wonderful", "no", "inspiration", "example", "with", "subtoken"]
        text = " ".join(words)
        batch_size = 3

        encoding = tokenizer_r.encode_plus(text, add_special_tokens=False)

        batch_encoding = tokenizer_r.batch_encode_plus([text] * batch_size, add_special_tokens=False)
        num_tokens = len(encoding["input_ids"])

        last_word_index = len(words) - 1
        last_token_index = num_tokens - 1
        last_batch_index = batch_size - 1
        last_char_index = len(text) - 1

        # words, tokens
        self.assertEqual(len(encoding.words(0)), num_tokens)
        self.assertEqual(max(encoding.words(0)), last_word_index)
        self.assertEqual(min(encoding.words(0)), 0)
        self.assertEqual(len(batch_encoding.words(last_batch_index)), num_tokens)
        self.assertEqual(max(batch_encoding.words(last_batch_index)), last_word_index)
        self.assertEqual(min(batch_encoding.words(last_batch_index)), 0)
        self.assertEqual(len(encoding.tokens(0)), num_tokens)

        # Assert token_to_word
        self.assertEqual(encoding.token_to_word(0), 0)
        self.assertEqual(encoding.token_to_word(0, 0), 0)
        self.assertEqual(encoding.token_to_word(last_token_index), last_word_index)
        self.assertEqual(encoding.token_to_word(0, last_token_index), last_word_index)
        self.assertEqual(batch_encoding.token_to_word(1, 0), 0)
        self.assertEqual(batch_encoding.token_to_word(0, last_token_index), last_word_index)
        self.assertEqual(batch_encoding.token_to_word(last_batch_index, last_token_index), last_word_index)

        # Assert word_to_tokens
        self.assertEqual(encoding.word_to_tokens(0).start, 0)
        self.assertEqual(encoding.word_to_tokens(0, 0).start, 0)
        self.assertEqual(encoding.word_to_tokens(last_word_index).end, last_token_index + 1)
        self.assertEqual(encoding.word_to_tokens(0, last_word_index).end, last_token_index + 1)
        self.assertEqual(batch_encoding.word_to_tokens(1, 0).start, 0)
        self.assertEqual(batch_encoding.word_to_tokens(0, last_word_index).end, last_token_index + 1)
        self.assertEqual(batch_encoding.word_to_tokens(last_batch_index, last_word_index).end, last_token_index + 1)

        # Assert token_to_chars
        self.assertEqual(encoding.token_to_chars(0).start, 0)
        self.assertEqual(encoding.token_to_chars(0, 0).start, 0)
        self.assertEqual(encoding.token_to_chars(last_token_index).end, last_char_index + 1)
        self.assertEqual(encoding.token_to_chars(0, last_token_index).end, last_char_index + 1)
        self.assertEqual(batch_encoding.token_to_chars(1, 0).start, 0)
        self.assertEqual(batch_encoding.token_to_chars(0, last_token_index).end, last_char_index + 1)
        self.assertEqual(batch_encoding.token_to_chars(last_batch_index, last_token_index).end, last_char_index + 1)

        # Assert char_to_token
        self.assertEqual(encoding.char_to_token(0), 0)
        self.assertEqual(encoding.char_to_token(0, 0), 0)
        self.assertEqual(encoding.char_to_token(last_char_index), last_token_index)
        self.assertEqual(encoding.char_to_token(0, last_char_index), last_token_index)
        self.assertEqual(batch_encoding.char_to_token(1, 0), 0)
        self.assertEqual(batch_encoding.char_to_token(0, last_char_index), last_token_index)
        self.assertEqual(batch_encoding.char_to_token(last_batch_index, last_char_index), last_token_index)

        # Assert char_to_word
        self.assertEqual(encoding.char_to_word(0), 0)
        self.assertEqual(encoding.char_to_word(0, 0), 0)
        self.assertEqual(encoding.char_to_word(last_char_index), last_word_index)
        self.assertEqual(encoding.char_to_word(0, last_char_index), last_word_index)
        self.assertEqual(batch_encoding.char_to_word(1, 0), 0)
        self.assertEqual(batch_encoding.char_to_word(0, last_char_index), last_word_index)
        self.assertEqual(batch_encoding.char_to_word(last_batch_index, last_char_index), last_word_index)

        # Assert word_to_chars
        self.assertEqual(encoding.word_to_chars(0).start, 0)
        self.assertEqual(encoding.word_to_chars(0, 0).start, 0)
        self.assertEqual(encoding.word_to_chars(last_word_index).end, last_char_index + 1)
        self.assertEqual(encoding.word_to_chars(0, last_word_index).end, last_char_index + 1)
        self.assertEqual(batch_encoding.word_to_chars(1, 0).start, 0)
        self.assertEqual(batch_encoding.word_to_chars(0, last_word_index).end, last_char_index + 1)
        self.assertEqual(batch_encoding.word_to_chars(last_batch_index, last_word_index).end, last_char_index + 1)
Funtowicz Morgan's avatar
Funtowicz Morgan committed
185

186
    def assert_tokenization_python_rust_equals(self, tokenizer_r, tokenizer_p):
187
188
189
190
191
        # Ensure basic input match
        input_p = tokenizer_p.encode_plus(self._data)
        input_r = tokenizer_r.encode_plus(self._data)

        for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
Funtowicz Morgan's avatar
Funtowicz Morgan committed
192
            self.assertSequenceEqual(input_p[key], input_r[key])
193
194
195
196
197

        input_pairs_p = tokenizer_p.encode_plus(self._data, self._data)
        input_pairs_r = tokenizer_r.encode_plus(self._data, self._data)

        for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
Funtowicz Morgan's avatar
Funtowicz Morgan committed
198
            self.assertSequenceEqual(input_pairs_p[key], input_pairs_r[key])
199
200

        # Ensure truncation match
201
202
        input_p = tokenizer_p.encode_plus(self._data, max_length=512, truncation=True)
        input_r = tokenizer_r.encode_plus(self._data, max_length=512, truncation=True)
203
204

        for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
Funtowicz Morgan's avatar
Funtowicz Morgan committed
205
            self.assertSequenceEqual(input_p[key], input_r[key])
206
207

        # Ensure truncation with stride match
208
209
210
211
212
213
        input_p = tokenizer_p.encode_plus(
            self._data, max_length=512, truncation=True, stride=3, return_overflowing_tokens=True
        )
        input_r = tokenizer_r.encode_plus(
            self._data, max_length=512, truncation=True, stride=3, return_overflowing_tokens=True
        )
214
215

        for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
216
            self.assertSequenceEqual(input_p[key], input_r[key][0])
Funtowicz Morgan's avatar
Funtowicz Morgan committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230

    def assert_num_special_tokens_to_add_equal(self, tokenizer_r, tokenizer_p):
        # Check we have the same number of added_tokens for both pair and non-pair inputs.
        self.assertEqual(tokenizer_r.num_special_tokens_to_add(False), tokenizer_p.num_special_tokens_to_add(False))
        self.assertEqual(tokenizer_r.num_special_tokens_to_add(True), tokenizer_p.num_special_tokens_to_add(True))

    def assert_max_length_equal(self, tokenizer_r, tokenizer_p):
        # Check we have the correct max_length for both pair and non-pair inputs.
        self.assertEqual(tokenizer_r.max_len_single_sentence, tokenizer_p.max_len_single_sentence)
        self.assertEqual(tokenizer_r.max_len_sentences_pair, tokenizer_p.max_len_sentences_pair)

    def assert_special_tokens_map_equal(self, tokenizer_r, tokenizer_p):
        # Assert the set of special tokens match.
        self.assertSequenceEqual(
Lysandre's avatar
Lysandre committed
231
232
            tokenizer_p.special_tokens_map.items(),
            tokenizer_r.special_tokens_map.items(),
233
234
        )

235
236
237
238
239
240
241
242
    def assert_add_tokens(self, tokenizer_r):
        vocab_size = tokenizer_r.vocab_size
        self.assertEqual(tokenizer_r.add_tokens(""), 0)
        self.assertEqual(tokenizer_r.add_tokens("testoken"), 1)
        self.assertEqual(tokenizer_r.add_tokens(["testoken1", "testtoken2"]), 2)
        self.assertEqual(len(tokenizer_r), vocab_size + 3)

        self.assertEqual(tokenizer_r.add_special_tokens({}), 0)
243
        self.assertEqual(tokenizer_r.add_special_tokens({"bos_token": "[BOS]", "eos_token": "[EOS]"}), 2)
244
245
246
247
248
249
250
        self.assertRaises(
            AssertionError, tokenizer_r.add_special_tokens, {"additional_special_tokens": "<testtoken1>"}
        )
        self.assertEqual(tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken2>"]}), 1)
        self.assertEqual(
            tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken3>", "<testtoken4>"]}), 2
        )
251
        self.assertEqual(len(tokenizer_r), vocab_size + 8)
252

Funtowicz Morgan's avatar
Funtowicz Morgan committed
253
    def assert_offsets_mapping(self, tokenizer_r):
254
255
256
257
        text = "Wonderful no inspiration example with subtoken"
        pair = "Along with an awesome pair"

        # No pair
Funtowicz Morgan's avatar
Funtowicz Morgan committed
258
259
260
261
        tokens_with_offsets = tokenizer_r.encode_plus(
            text, return_special_tokens_mask=True, return_offsets_mapping=True, add_special_tokens=True
        )
        added_tokens = tokenizer_r.num_special_tokens_to_add(False)
262
263
264
265
266
267
268
269
270
        offsets = tokens_with_offsets["offset_mapping"]

        # Assert there is the same number of tokens and offsets
        self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"]))

        # Assert there is online added_tokens special_tokens
        self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens)

        # Pairs
Funtowicz Morgan's avatar
Funtowicz Morgan committed
271
272
        tokens_with_offsets = tokenizer_r.encode_plus(
            text, pair, return_special_tokens_mask=True, return_offsets_mapping=True, add_special_tokens=True
273
        )
Funtowicz Morgan's avatar
Funtowicz Morgan committed
274
        added_tokens = tokenizer_r.num_special_tokens_to_add(True)
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
        offsets = tokens_with_offsets["offset_mapping"]

        # Assert there is the same number of tokens and offsets
        self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"]))

        # Assert there is online added_tokens special_tokens
        self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens)

    def assert_batch_encode_dynamic_overflowing(self, tokenizer: PreTrainedTokenizer):
        """
        When calling batch_encode with multiple sequence it can returns different number of
        overflowing encoding for each sequence:
        [
          Sequence 1: [Encoding 1, Encoding 2],
          Sequence 2: [Encoding 1],
          Sequence 3: [Encoding 1, Encoding 2, ... Encoding N]
        ]
        This needs to be padded so that it can represented as a tensor
        """
        returned_tensor = "pt" if is_torch_available() else "tf"

296
297
298
        if not tokenizer.pad_token or tokenizer.pad_token_id < 0:
            return

299
300
301
        tokens = tokenizer.encode_plus(
            "HuggingFace is solving NLP one commit at a time",
            max_length=6,
302
303
            padding=True,
            truncation=True,
304
305
306
307
308
309
310
311
312
313
314
            return_tensors=returned_tensor,
            return_overflowing_tokens=True,
        )

        for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
            self.assertEqual(len(tokens[key].shape), 2)

        # Mono sample
        tokens = tokenizer.batch_encode_plus(
            ["HuggingFace is solving NLP one commit at a time"],
            max_length=6,
315
316
            padding=True,
            truncation="only_first",
317
318
319
320
321
322
323
324
325
326
327
328
            return_tensors=returned_tensor,
            return_overflowing_tokens=True,
        )

        for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
            self.assertEqual(len(tokens[key].shape), 2)
            self.assertEqual(tokens[key].shape[-1], 6)

        # Multi sample
        tokens = tokenizer.batch_encode_plus(
            ["HuggingFace is solving NLP one commit at a time", "Very tiny input"],
            max_length=6,
329
330
            padding=True,
            truncation="only_first",
331
332
333
334
335
336
337
338
            return_tensors=returned_tensor,
            return_overflowing_tokens=True,
        )

        for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
            self.assertEqual(len(tokens[key].shape), 2)
            self.assertEqual(tokens[key].shape[-1], 6)

339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
    def assert_pretokenized_inputs(self, tokenizer_r, tokenizer_p):
        # Input string
        pretokenized_input_simple = "This is a sample input".split()
        pretokenized_input_pair = "This is a sample pair".split()

        # Test encode for pretokenized inputs
        output_r = tokenizer_r.encode(pretokenized_input_simple, is_pretokenized=True)
        output_p = tokenizer_p.encode(pretokenized_input_simple, is_pretokenized=True)
        self.assertEqual(output_p, output_r)

        kwargs = {
            "is_pretokenized": True,
            "return_token_type_ids": True,
            "return_attention_mask": True,
            "return_overflowing_tokens": False,
            "return_special_tokens_mask": True,
            "return_offsets_mapping": False,  # Not implemented in python tokenizers
        }
357
358
359
360
361
362
363
364
        batch_kwargs = {
            "is_pretokenized": True,
            "return_token_type_ids": True,
            "return_attention_mask": True,  # we have an 's' here
            "return_overflowing_tokens": False,
            "return_special_tokens_mask": True,  # we have an 's' here
            "return_offsets_mapping": False,  # Not implemented in python tokenizers
        }
365
366
367
368
369
370
371
372
        # Test encode_plus for pretokenized inputs
        output_r = tokenizer_r.encode_plus(pretokenized_input_simple, **kwargs)
        output_p = tokenizer_p.encode_plus(pretokenized_input_simple, **kwargs)
        for key in output_p.keys():
            self.assertEqual(output_p[key], output_r[key])

        # Test batch_encode_plus for pretokenized inputs
        input_batch = ([pretokenized_input_simple] * 2) + [pretokenized_input_simple + pretokenized_input_pair]
373
374
        output_r = tokenizer_r.batch_encode_plus(input_batch, **batch_kwargs)
        output_p = tokenizer_p.batch_encode_plus(input_batch, **batch_kwargs)
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
        for key in output_p.keys():
            self.assertEqual(output_p[key], output_r[key])

        # Test encode for pretokenized inputs pairs
        output_r = tokenizer_r.encode(pretokenized_input_simple, pretokenized_input_pair, is_pretokenized=True)
        output_p = tokenizer_p.encode(pretokenized_input_simple, pretokenized_input_pair, is_pretokenized=True)
        self.assertEqual(output_p, output_r)

        # Test encode_plus for pretokenized inputs
        output_r = tokenizer_r.encode_plus(pretokenized_input_simple, pretokenized_input_pair, **kwargs)
        output_p = tokenizer_p.encode_plus(pretokenized_input_simple, pretokenized_input_pair, **kwargs)
        for key in output_p.keys():
            self.assertEqual(output_p[key], output_r[key])

        # Test batch_encode_plus for pretokenized inputs
        input_batch_pair = ([pretokenized_input_simple, pretokenized_input_pair] * 2) + [
            pretokenized_input_simple + pretokenized_input_pair,
            pretokenized_input_pair,
        ]
394
395
        output_r = tokenizer_r.batch_encode_plus(input_batch_pair, **batch_kwargs)
        output_p = tokenizer_p.batch_encode_plus(input_batch_pair, **batch_kwargs)
396
397
398
        for key in output_p.keys():
            self.assertEqual(output_p[key], output_r[key])

399
400
401
402
403
404
405
406
407
408
409
410
411
412
    def assert_create_token_type_ids(self, tokenizer_r, tokenizer_p):
        input_simple = [1, 2, 3]
        input_pair = [1, 2, 3]

        # Generate output
        output_r = tokenizer_r.create_token_type_ids_from_sequences(input_simple)
        output_p = tokenizer_p.create_token_type_ids_from_sequences(input_simple)
        self.assertEqual(output_p, output_r)

        # Generate pair output
        output_r = tokenizer_r.create_token_type_ids_from_sequences(input_simple, input_pair)
        output_p = tokenizer_p.create_token_type_ids_from_sequences(input_simple, input_pair)
        self.assertEqual(output_p, output_r)

413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
    def assert_build_inputs_with_special_tokens(self, tokenizer_r, tokenizer_p):
        # Input string
        input_simple = tokenizer_p.tokenize("This is a sample input")
        input_pair = tokenizer_p.tokenize("This is a sample pair")

        # Generate output
        output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple)
        output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple)
        self.assertEqual(output_p, output_r)

        # Generate pair output
        output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair)
        output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair)
        self.assertEqual(output_p, output_r)

        # Input tokens id
        input_simple = tokenizer_p.encode("This is a sample input")
        input_pair = tokenizer_p.encode("This is a sample pair")

        # Generate output
        output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple)
        output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple)
        self.assertEqual(output_p, output_r)

        # Generate pair output
        output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair)
        output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair)
        self.assertEqual(output_p, output_r)

Funtowicz Morgan's avatar
Funtowicz Morgan committed
442
443
    def assert_padding(self, tokenizer_r, tokenizer_p, max_length=15):
        def assert_padded_input_match(input_r: list, input_p: list, max_length: int):
444

Funtowicz Morgan's avatar
Funtowicz Morgan committed
445
            # Ensure we match max_length
446
447
            self.assertEqual(len(input_r), max_length)
            self.assertEqual(len(input_p), max_length)
448

Funtowicz Morgan's avatar
Funtowicz Morgan committed
449
450
451
452
            # Ensure the number of padded tokens is the same
            padded_tokens_r = list(takewhile(lambda i: i == tokenizer_r.pad_token_id, reversed(input_r)))
            padded_tokens_p = list(takewhile(lambda i: i == tokenizer_p.pad_token_id, reversed(input_p)))
            self.assertSequenceEqual(padded_tokens_r, padded_tokens_p)
453

454
        def assert_batch_padded_input_match(input_r: dict, input_p: dict, max_length: int):
Funtowicz Morgan's avatar
Funtowicz Morgan committed
455
            for i_r in input_r.values():
456
457
458
459
460
461
                self.assertEqual(len(i_r), 2), self.assertEqual(len(i_r[0]), max_length), self.assertEqual(
                    len(i_r[1]), max_length
                )
                self.assertEqual(len(i_r), 2), self.assertEqual(len(i_r[0]), max_length), self.assertEqual(
                    len(i_r[1]), max_length
                )
462

Funtowicz Morgan's avatar
Funtowicz Morgan committed
463
464
            for i_r, i_p in zip(input_r["input_ids"], input_p["input_ids"]):
                assert_padded_input_match(i_r, i_p, max_length)
465

Funtowicz Morgan's avatar
Funtowicz Morgan committed
466
467
            for i_r, i_p in zip(input_r["attention_mask"], input_p["attention_mask"]):
                self.assertSequenceEqual(i_r, i_p)
468

469
        # Encode - Simple input
Funtowicz Morgan's avatar
Funtowicz Morgan committed
470
471
472
        input_r = tokenizer_r.encode("This is a simple input", max_length=max_length, pad_to_max_length=True)
        input_p = tokenizer_p.encode("This is a simple input", max_length=max_length, pad_to_max_length=True)
        assert_padded_input_match(input_r, input_p, max_length)
473
474
475
        input_r = tokenizer_r.encode("This is a simple input", max_length=max_length, padding="max_length")
        input_p = tokenizer_p.encode("This is a simple input", max_length=max_length, padding="max_length")
        assert_padded_input_match(input_r, input_p, max_length)
476

477
478
479
480
481
        input_r = tokenizer_r.encode("This is a simple input", padding="longest")
        input_p = tokenizer_p.encode("This is a simple input", padding=True)
        assert_padded_input_match(input_r, input_p, len(input_r))

        # Encode - Pair input
Funtowicz Morgan's avatar
Funtowicz Morgan committed
482
483
484
485
486
487
488
        input_r = tokenizer_r.encode(
            "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
        )
        input_p = tokenizer_p.encode(
            "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
        )
        assert_padded_input_match(input_r, input_p, max_length)
489
490
491
492
493
494
495
496
497
498
        input_r = tokenizer_r.encode(
            "This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
        )
        input_p = tokenizer_p.encode(
            "This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
        )
        assert_padded_input_match(input_r, input_p, max_length)
        input_r = tokenizer_r.encode("This is a simple input", "This is a pair", padding=True)
        input_p = tokenizer_p.encode("This is a simple input", "This is a pair", padding="longest")
        assert_padded_input_match(input_r, input_p, len(input_r))
499

500
        # Encode_plus - Simple input
Funtowicz Morgan's avatar
Funtowicz Morgan committed
501
502
503
504
        input_r = tokenizer_r.encode_plus("This is a simple input", max_length=max_length, pad_to_max_length=True)
        input_p = tokenizer_p.encode_plus("This is a simple input", max_length=max_length, pad_to_max_length=True)
        assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length)
        self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
505
506
507
508
        input_r = tokenizer_r.encode_plus("This is a simple input", max_length=max_length, padding="max_length")
        input_p = tokenizer_p.encode_plus("This is a simple input", max_length=max_length, padding="max_length")
        assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length)
        self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
509

510
511
512
513
514
515
516
        input_r = tokenizer_r.encode_plus("This is a simple input", padding="longest")
        input_p = tokenizer_p.encode_plus("This is a simple input", padding=True)
        assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]))

        self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])

        # Encode_plus - Pair input
Funtowicz Morgan's avatar
Funtowicz Morgan committed
517
518
519
520
521
522
523
524
        input_r = tokenizer_r.encode_plus(
            "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
        )
        input_p = tokenizer_p.encode_plus(
            "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
        )
        assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length)
        self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
525
526
527
528
529
530
531
532
533
534
535
536
        input_r = tokenizer_r.encode_plus(
            "This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
        )
        input_p = tokenizer_p.encode_plus(
            "This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
        )
        assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length)
        self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
        input_r = tokenizer_r.encode_plus("This is a simple input", "This is a pair", padding="longest")
        input_p = tokenizer_p.encode_plus("This is a simple input", "This is a pair", padding=True)
        assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]))
        self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
537

538
        # Batch_encode_plus - Simple input
Funtowicz Morgan's avatar
Funtowicz Morgan committed
539
540
541
542
543
544
        input_r = tokenizer_r.batch_encode_plus(
            ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, pad_to_max_length=True
        )
        input_p = tokenizer_p.batch_encode_plus(
            ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, pad_to_max_length=True
        )
545
546
547
        assert_batch_padded_input_match(input_r, input_p, max_length)

        input_r = tokenizer_r.batch_encode_plus(
Lysandre's avatar
Lysandre committed
548
549
550
            ["This is a simple input 1", "This is a simple input 2"],
            max_length=max_length,
            padding="max_length",
551
552
        )
        input_p = tokenizer_p.batch_encode_plus(
Lysandre's avatar
Lysandre committed
553
554
555
            ["This is a simple input 1", "This is a simple input 2"],
            max_length=max_length,
            padding="max_length",
556
557
558
559
        )
        assert_batch_padded_input_match(input_r, input_p, max_length)

        input_r = tokenizer_r.batch_encode_plus(
Lysandre's avatar
Lysandre committed
560
561
562
            ["This is a simple input 1", "This is a simple input 2"],
            max_length=max_length,
            padding="longest",
563
564
        )
        input_p = tokenizer_p.batch_encode_plus(
Lysandre's avatar
Lysandre committed
565
566
567
            ["This is a simple input 1", "This is a simple input 2"],
            max_length=max_length,
            padding=True,
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
        )
        assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]))

        input_r = tokenizer_r.batch_encode_plus(
            ["This is a simple input 1", "This is a simple input 2"], padding="longest"
        )
        input_p = tokenizer_p.batch_encode_plus(["This is a simple input 1", "This is a simple input 2"], padding=True)
        assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]))

        # Batch_encode_plus - Pair input
        input_r = tokenizer_r.batch_encode_plus(
            [
                ("This is a simple input 1", "This is a simple input 2"),
                ("This is a simple pair 1", "This is a simple pair 2"),
            ],
            max_length=max_length,
            truncation=True,
            padding="max_length",
        )
        input_p = tokenizer_p.batch_encode_plus(
            [
                ("This is a simple input 1", "This is a simple input 2"),
                ("This is a simple pair 1", "This is a simple pair 2"),
            ],
            max_length=max_length,
            truncation=True,
            padding="max_length",
        )
        assert_batch_padded_input_match(input_r, input_p, max_length)
597

Funtowicz Morgan's avatar
Funtowicz Morgan committed
598
599
600
601
602
        input_r = tokenizer_r.batch_encode_plus(
            [
                ("This is a simple input 1", "This is a simple input 2"),
                ("This is a simple pair 1", "This is a simple pair 2"),
            ],
603
            padding=True,
Funtowicz Morgan's avatar
Funtowicz Morgan committed
604
605
606
607
608
609
        )
        input_p = tokenizer_p.batch_encode_plus(
            [
                ("This is a simple input 1", "This is a simple input 2"),
                ("This is a simple pair 1", "This is a simple pair 2"),
            ],
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
            padding="longest",
        )
        assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]))

        # Using pad on single examples after tokenization
        input_r = tokenizer_r.encode_plus("This is a input 1")
        input_r = tokenizer_r.pad(input_r)

        input_p = tokenizer_r.encode_plus("This is a input 1")
        input_p = tokenizer_r.pad(input_p)

        assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]))

        # Using pad on single examples after tokenization
        input_r = tokenizer_r.encode_plus("This is a input 1")
        input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length")

        input_p = tokenizer_r.encode_plus("This is a input 1")
        input_p = tokenizer_r.pad(input_p, max_length=max_length, padding="max_length")

        assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length)

        # Using pad after tokenization
        input_r = tokenizer_r.batch_encode_plus(
            ["This is a input 1", "This is a much longer input whilch should be padded"]
Funtowicz Morgan's avatar
Funtowicz Morgan committed
635
        )
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
        input_r = tokenizer_r.pad(input_r)

        input_p = tokenizer_r.batch_encode_plus(
            ["This is a input 1", "This is a much longer input whilch should be padded"]
        )
        input_p = tokenizer_r.pad(input_p)

        assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]))

        # Using pad after tokenization
        input_r = tokenizer_r.batch_encode_plus(
            ["This is a input 1", "This is a much longer input whilch should be padded"]
        )
        input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length")

        input_p = tokenizer_r.batch_encode_plus(
            ["This is a input 1", "This is a much longer input whilch should be padded"]
        )
        input_p = tokenizer_r.pad(input_p, max_length=max_length, padding="max_length")

        assert_batch_padded_input_match(input_r, input_p, max_length)
657

Funtowicz Morgan's avatar
Funtowicz Morgan committed
658
659
660
    def assert_save_pretrained(self, tokenizer_r, tokenizer_p):
        # Checks it save with the same files
        self.assertSequenceEqual(tokenizer_r.save_vocabulary("."), tokenizer_p.save_vocabulary("."))
661

Funtowicz Morgan's avatar
Funtowicz Morgan committed
662
663
        # Checks everything loads correctly in the same way
        tokenizer_rp, tokenizer_pp = tokenizer_r.from_pretrained("."), tokenizer_p.from_pretrained(".")
664

Funtowicz Morgan's avatar
Funtowicz Morgan committed
665
666
667
668
669
        # Check special tokens are set accordingly on Rust and Python
        for key in tokenizer_pp.special_tokens_map:
            self.assertTrue(hasattr(tokenizer_rp, key))
            # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
            # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
670

Funtowicz Morgan's avatar
Funtowicz Morgan committed
671
672
673
674
675
676
677
678
    def assert_embeded_special_tokens(self, tokenizer_r, tokenizer_p):
        sentence = "A, <mask> AllenNLP sentence."
        tokens_r = tokenizer_r.encode_plus(
            sentence, add_special_tokens=True, return_attention_mask=False, return_token_type_ids=True
        )
        tokens_p = tokenizer_p.encode_plus(
            sentence, add_special_tokens=True, return_attention_mask=False, return_token_type_ids=True
        )
679

Funtowicz Morgan's avatar
Funtowicz Morgan committed
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
        for key in tokens_p.keys():
            self.assertEqual(tokens_r[key], tokens_p[key])

        self.assertEqual(sum(tokens_r["token_type_ids"]), 0)
        self.assertEqual(sum(tokens_p["token_type_ids"]), 0)

        tokens_r = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"])
        tokens_p = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"])
        self.assertSequenceEqual(tokens_r, tokens_p)

    def assert_add_special_tokens(self, tokenizer_r):
        simple_num_special_tokens_to_add = tokenizer_r.num_special_tokens_to_add(pair=False)
        # pair_num_special_tokens_to_add = tokenizer_r.num_special_tokens_to_add(pair=True)

        for text in ["", " "]:
            # tokenize()
            no_special_tokens = tokenizer_r.tokenize(text, add_special_tokens=False)
            with_special_tokens = tokenizer_r.tokenize(text, add_special_tokens=True)
            self.assertEqual(len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add)

            # encode()
            no_special_tokens = tokenizer_r.encode(text, add_special_tokens=False)
            with_special_tokens = tokenizer_r.encode(text, add_special_tokens=True)
            self.assertEqual(len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add)

            # encode_plus()
            no_special_tokens = tokenizer_r.encode_plus(text, add_special_tokens=False)
            with_special_tokens = tokenizer_r.encode_plus(text, add_special_tokens=True)
            for key in no_special_tokens.keys():
                self.assertEqual(
                    len(no_special_tokens[key]), len(with_special_tokens[key]) - simple_num_special_tokens_to_add
                )

            # # batch_encode_plus
            no_special_tokens = tokenizer_r.batch_encode_plus([text, text], add_special_tokens=False)
            with_special_tokens = tokenizer_r.batch_encode_plus([text, text], add_special_tokens=True)
            for key in no_special_tokens.keys():
                for i_no, i_with in zip(no_special_tokens[key], with_special_tokens[key]):
                    self.assertEqual(len(i_no), len(i_with) - simple_num_special_tokens_to_add)

720
721
722
723
724
725
    def assert_prepare_for_model(self, tokenizer_r, tokenizer_p):
        string_sequence = "Asserting that both tokenizers are equal"
        python_output = tokenizer_p.prepare_for_model(tokenizer_p.encode(string_sequence))
        rust_output = tokenizer_r.prepare_for_model(tokenizer_r.encode(string_sequence))
        self.assertEqual(python_output, rust_output)

Funtowicz Morgan's avatar
Funtowicz Morgan committed
726
727
728
729
730
731
732
733

class WordPieceFastTokenizerTest(CommonFastTokenizerTest):
    """
    Override all the specific methods to test WordPiece behavior
    """

    TOKENIZERS_CLASSES = frozenset(
        [
734
735
736
737
            Tokenizer("Bert", BertTokenizerFast, BertTokenizer, "vocab_file", filter_non_english, None),
            Tokenizer(
                "DistilBert", DistilBertTokenizerFast, DistilBertTokenizer, "vocab_file", filter_non_english, None
            ),
Funtowicz Morgan's avatar
Funtowicz Morgan committed
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
        ]
    )

    def fast_only(self, tokenizer_r):
        super().fast_only(tokenizer_r)
        self.assert_offsets_with_special_characters(tokenizer_r)

    def assert_add_special_tokens(self, tokenizer_r):
        super().assert_add_special_tokens(tokenizer_r)

    def assert_offsets_with_special_characters(self, tokenizer_r):
        sentence = "A, na茂ve [MASK] AllenNLP sentence."
        tokens = tokenizer_r.encode_plus(
            sentence,
            return_attention_mask=False,
            return_token_type_ids=False,
            return_offsets_mapping=True,
            add_special_tokens=True,
        )
757

Anthony MOI's avatar
Anthony MOI committed
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
        do_lower_case = tokenizer_r.init_kwargs.get("do_lower_case")
        expected_results = (
            [
                ((0, 0), "[CLS]"),
                ((0, 1), "A"),
                ((1, 2), ","),
                ((3, 5), "na"),
                ((5, 6), "##茂"),
                ((6, 8), "##ve"),
                ((9, 15), "[MASK]"),
                ((16, 21), "Allen"),
                ((21, 23), "##NL"),
                ((23, 24), "##P"),
                ((25, 33), "sentence"),
                ((33, 34), "."),
                ((0, 0), "[SEP]"),
            ]
            if not do_lower_case
            else [
                ((0, 0), "[CLS]"),
                ((0, 1), "a"),
                ((1, 2), ","),
                ((3, 8), "naive"),
                ((9, 15), "[MASK]"),
                ((16, 21), "allen"),
                ((21, 23), "##nl"),
                ((23, 24), "##p"),
                ((25, 33), "sentence"),
                ((33, 34), "."),
                ((0, 0), "[SEP]"),
            ]
        )
790

Funtowicz Morgan's avatar
Funtowicz Morgan committed
791
        self.assertEqual([e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens["input_ids"]))
Anthony MOI's avatar
Anthony MOI committed
792
        self.assertEqual([e[0] for e in expected_results], tokens["offset_mapping"])
793
794


Funtowicz Morgan's avatar
Funtowicz Morgan committed
795
796
class RobertaFastTokenizerTest(CommonFastTokenizerTest):
    TOKENIZERS_CLASSES = frozenset(
797
798
799
800
801
802
803
804
805
806
        [
            Tokenizer(
                "Roberta",
                RobertaTokenizerFast,
                RobertaTokenizer,
                "vocab_file",
                filter_roberta_detectors,
                (("cls_token", "<s>"),),
            )
        ]
Funtowicz Morgan's avatar
Funtowicz Morgan committed
807
    )
808

Funtowicz Morgan's avatar
Funtowicz Morgan committed
809
810
811
812
    def assert_embeded_special_tokens(self, tokenizer_r, tokenizer_p):
        sentence = "A, <mask> AllenNLP sentence."
        tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
        tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
813

Funtowicz Morgan's avatar
Funtowicz Morgan committed
814
        # Rust correctly handles the space before the mask while python doesnt
815
816
        self.assertSequenceEqual(tokens_r["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
        self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
817

Funtowicz Morgan's avatar
Funtowicz Morgan committed
818
        # token_type_ids should put 0 everywhere
819
        self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"]))
820

Funtowicz Morgan's avatar
Funtowicz Morgan committed
821
        # attention_mask should put 1 everywhere, so sum over length should be 1
822
        self.assertEqual(
Funtowicz Morgan's avatar
Funtowicz Morgan committed
823
824
825
            sum(tokens_r["attention_mask"]) / len(tokens_r["attention_mask"]),
            sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]),
        )
826

Funtowicz Morgan's avatar
Funtowicz Morgan committed
827
        tokens_r = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"])
828
829
830
        tokens_p = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"])
        self.assertSequenceEqual(tokens_r, ["<s>", "A", ",", "<mask>", "臓Allen", "N", "LP", "臓sentence", ".", "</s>"])
        self.assertSequenceEqual(tokens_p, ["<s>", "A", ",", "<mask>", "臓Allen", "N", "LP", "臓sentence", ".", "</s>"])
831

832

Funtowicz Morgan's avatar
Funtowicz Morgan committed
833
834
class NoPaddingTokenFastTokenizerMatchingTest(CommonFastTokenizerTest):
    TOKENIZERS_CLASSES = [
835
836
        Tokenizer("OpenAI GPT", OpenAIGPTTokenizerFast, OpenAIGPTTokenizer, "vocab_file", None, None),
        Tokenizer("GPT2", GPT2TokenizerFast, GPT2Tokenizer, "vocab_file", None, [("add_prefix_space", True)]),
Funtowicz Morgan's avatar
Funtowicz Morgan committed
837
    ]
838

839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
    def fast_align_python(self, tokenizer_r, tokenizer_p, tok_case, pretrained_name):
        # Check is_fast is set correctly
        self.assertFalse(tokenizer_p.is_fast)
        self.assertTrue(tokenizer_r.is_fast)

        # Check that Rust and Python align
        self.assert_tokenization_python_rust_equals(tokenizer_r, tokenizer_p)
        self.assert_num_special_tokens_to_add_equal(tokenizer_r, tokenizer_p)
        self.assert_max_length_equal(tokenizer_r, tokenizer_p)
        self.assert_special_tokens_map_equal(tokenizer_r, tokenizer_p)
        self.assert_embeded_special_tokens(tokenizer_r, tokenizer_p)
        self.assert_padding(tokenizer_r, tokenizer_p)

        # Specific for
        kwargs = {}
        if tok_case.kwargs is not None:
            kwargs = dict(tok_case.kwargs)
        tokenizer_r = tok_case.rust_cls.from_pretrained(pretrained_name, **kwargs)
        self.assert_pretokenized_inputs(tokenizer_r, tokenizer_p)

Funtowicz Morgan's avatar
Funtowicz Morgan committed
859
860
861
862
863
864
865
866
867
    def assert_padding(self, tokenizer_r, tokenizer_p, max_length=15):
        # Simple input
        s = "This is a simple input"
        s2 = ["This is a simple input 1", "This is a simple input 2"]
        p = ("This is a simple input", "This is a pair")
        p2 = [
            ("This is a simple input 1", "This is a simple input 2"),
            ("This is a simple pair 1", "This is a simple pair 2"),
        ]
868

Funtowicz Morgan's avatar
Funtowicz Morgan committed
869
        # Simple input tests
870
        self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, padding="max_length")
871

Funtowicz Morgan's avatar
Funtowicz Morgan committed
872
        # Simple input
873
        self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, padding="max_length")
874

Funtowicz Morgan's avatar
Funtowicz Morgan committed
875
        # Simple input
876
        self.assertRaises(
Lysandre's avatar
Lysandre committed
877
878
879
880
881
            ValueError,
            tokenizer_r.batch_encode_plus,
            s2,
            max_length=max_length,
            padding="max_length",
882
        )
883

Funtowicz Morgan's avatar
Funtowicz Morgan committed
884
        # Pair input
885
        self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, padding="max_length")
886

Funtowicz Morgan's avatar
Funtowicz Morgan committed
887
        # Pair input
888
        self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, padding="max_length")
889

Funtowicz Morgan's avatar
Funtowicz Morgan committed
890
        # Pair input
891
        self.assertRaises(
Lysandre's avatar
Lysandre committed
892
893
894
895
896
            ValueError,
            tokenizer_r.batch_encode_plus,
            p2,
            max_length=max_length,
            padding="max_length",
897
        )
898

899

Funtowicz Morgan's avatar
Funtowicz Morgan committed
900
901
class TransfoXLFastTokenizerTest(NoPaddingTokenFastTokenizerMatchingTest):
    TOKENIZERS_CLASSES = frozenset(
902
        [Tokenizer("TransfoXL", TransfoXLTokenizerFast, TransfoXLTokenizer, "pretrained_vocab_file", None, None)]
Funtowicz Morgan's avatar
Funtowicz Morgan committed
903
    )
904

Funtowicz Morgan's avatar
Funtowicz Morgan committed
905
906
907
    @require_torch
    def test_all_tokenizers(self):
        super().test_all_tokenizers()
908
909
910
911

    @require_torch
    def test_pretokenized_tokenizers(self):
        super().test_pretokenized_tokenizers()