test_tokenization_fast.py 25.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import unittest

import numpy as np

from tests.utils import require_torch
from transformers import (
    BertTokenizer,
    BertTokenizerFast,
    DistilBertTokenizer,
    GPT2Tokenizer,
    GPT2TokenizerFast,
    OpenAIGPTTokenizer,
    PreTrainedTokenizer,
    RobertaTokenizer,
    TransfoXLTokenizer,
    is_torch_available,
)
from transformers.tokenization_distilbert import DistilBertTokenizerFast
from transformers.tokenization_openai import OpenAIGPTTokenizerFast
from transformers.tokenization_roberta import RobertaTokenizerFast
from transformers.tokenization_transfo_xl import TransfoXLTokenizerFast


class FastTokenizerMatchingTest(unittest.TestCase):
    def setUp(self) -> None:
        with open("tests/fixtures/sample_text.txt") as f_data:
            self._data = f_data.read().replace("\n\n", "\n").strip()

    def assert_sequence_almost_equals(self, a, b, threshold):

        # Handle padding
        if len(a) != len(b):
            max_len = max(len(a), len(b))

            # Pad with a negative number as vocab doesnt allow idx < 0
            # if will be tracked as differences
            if len(a) < max_len:
                a += [-1] * (max_len - len(a))

            if len(b) < max_len:
                b += [-1] * (max_len - len(b))

        # Convert to numpy for convenience
        a_, b_ = np.array(a), np.array(b)

        # Compute elementwise difference
        inputs_diffs = a_ - b_
        inputs_diff = np.count_nonzero(inputs_diffs)
        self.assertLessEqual(inputs_diff / a_.shape[0], threshold)

    def assert_tokenization_python_rust_almost_equals(self, tokenizer_p, tokenizer_r, threshold: float):
        # Ensure basic input match
        input_p = tokenizer_p.encode_plus(self._data)
        input_r = tokenizer_r.encode_plus(self._data)

        for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
            self.assert_sequence_almost_equals(input_p[key], input_r[key], threshold)

        input_pairs_p = tokenizer_p.encode_plus(self._data, self._data)
        input_pairs_r = tokenizer_r.encode_plus(self._data, self._data)

        for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
            self.assert_sequence_almost_equals(input_pairs_p[key], input_pairs_r[key], threshold)

        # Ensure truncation match
        input_p = tokenizer_p.encode_plus(self._data, max_length=512)
        input_r = tokenizer_r.encode_plus(self._data, max_length=512)

        for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
            self.assert_sequence_almost_equals(input_p[key], input_r[key], threshold)

        # Ensure truncation with stride match
        input_p = tokenizer_p.encode_plus(self._data, max_length=512, stride=3, return_overflowing_tokens=True)
        input_r = tokenizer_r.encode_plus(self._data, max_length=512, stride=3, return_overflowing_tokens=True)

        for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
            self.assert_sequence_almost_equals(input_p[key], input_r[key], threshold)

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    def assert_padding(self, tokenizer_r, tokenizer_p):
        # Simple input
        input_r = tokenizer_r.encode("This is a simple input", max_length=15, pad_to_max_length=True)
        input_p = tokenizer_p.encode("This is a simple input", max_length=15, pad_to_max_length=True)

        self.assertSequenceEqual(input_r, input_p)

        # Simple input
        input_r = tokenizer_r.encode_plus("This is a simple input", max_length=15, pad_to_max_length=True)
        input_p = tokenizer_p.encode_plus("This is a simple input", max_length=15, pad_to_max_length=True)

        self.assertSequenceEqual(input_r, input_p)

        # Simple input
        # TODO: Re-enable this test when batch_encode_plus with padding correctly handles padding
        # input_r = tokenizer_r.batch_encode_plus(
        #     ["This is a simple input 1", "This is a simple input 2"], max_length=15, pad_to_max_length=True
        # )
        # input_p = tokenizer_p.batch_encode_plus(
        #     ["This is a simple input 1", "This is a simple input 2"], max_length=15, pad_to_max_length=True
        # )

        # self.assertSequenceEqual(input_r, input_p)

        # Pair input
        input_r = tokenizer_r.encode("This is a simple input", "This is a pair", max_length=15, pad_to_max_length=True)
        input_p = tokenizer_p.encode("This is a simple input", "This is a pair", max_length=15, pad_to_max_length=True)

        self.assertSequenceEqual(input_r, input_p)

        # Pair input
        input_r = tokenizer_r.encode_plus(
            "This is a simple input", "This is a pair", max_length=15, pad_to_max_length=True
        )
        input_p = tokenizer_p.encode_plus(
            "This is a simple input", "This is a pair", max_length=15, pad_to_max_length=True
        )

        self.assertSequenceEqual(input_r, input_p)

        # Pair input
        # TODO: Re-enable this test when batch_encode_plus with padding correctly handles padding
        # input_r = tokenizer_r.batch_encode_plus(
        #     ["This is a simple input 1", "This is a simple input 2"],
        #     ["This is a simple pair 1", "This is a simple pair 2"],
        #     max_length=15,
        #     pad_to_max_length=True,
        # )
        # input_p = tokenizer_p.batch_encode_plus(
        #     ["This is a simple input 1", "This is a simple input 2"],
        #     ["This is a simple pair 1", "This is a simple pair 2"],
        #     max_length=15,
        #     pad_to_max_length=True,
        # )

        # self.assertSequenceEqual(input_r, input_p)

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
    def assert_add_tokens(self, tokenizer_r):
        vocab_size = tokenizer_r.vocab_size
        self.assertEqual(tokenizer_r.add_tokens(""), 0)
        self.assertEqual(tokenizer_r.add_tokens("testoken"), 1)
        self.assertEqual(tokenizer_r.add_tokens(["testoken1", "testtoken2"]), 2)
        self.assertEqual(len(tokenizer_r), vocab_size + 3)

        self.assertEqual(tokenizer_r.add_special_tokens({}), 0)
        self.assertRaises(
            AssertionError, tokenizer_r.add_special_tokens, {"additional_special_tokens": "<testtoken1>"}
        )
        self.assertEqual(tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken2>"]}), 1)
        self.assertEqual(
            tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken3>", "<testtoken4>"]}), 2
        )
        self.assertEqual(len(tokenizer_r), vocab_size + 6)

    def assert_offsets_mapping(self, tokenizer):
        text = "Wonderful no inspiration example with subtoken"
        pair = "Along with an awesome pair"

        # No pair
        tokens_with_offsets = tokenizer.encode_plus(text, return_special_tokens_mask=True, return_offsets_mapping=True)
        added_tokens = tokenizer.num_added_tokens(False)
        offsets = tokens_with_offsets["offset_mapping"]

        # Assert there is the same number of tokens and offsets
        self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"]))

        # Assert there is online added_tokens special_tokens
        self.assertEqual(sum([0 if x else 1 for x in offsets]), added_tokens)
        self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens)

        # Pairs
        tokens_with_offsets = tokenizer.encode_plus(
            text, pair, return_special_tokens_mask=True, return_offsets_mapping=True
        )
        added_tokens = tokenizer.num_added_tokens(True)
        offsets = tokens_with_offsets["offset_mapping"]

        # Assert there is the same number of tokens and offsets
        self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"]))

        # Assert there is online added_tokens special_tokens
        self.assertEqual(sum([0 if x else 1 for x in offsets]), added_tokens)
        self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens)

    def assert_batch_encode_dynamic_overflowing(self, tokenizer: PreTrainedTokenizer):
        """
        When calling batch_encode with multiple sequence it can returns different number of
        overflowing encoding for each sequence:
        [
          Sequence 1: [Encoding 1, Encoding 2],
          Sequence 2: [Encoding 1],
          Sequence 3: [Encoding 1, Encoding 2, ... Encoding N]
        ]
        This needs to be padded so that it can represented as a tensor
        """
        returned_tensor = "pt" if is_torch_available() else "tf"

        tokens = tokenizer.encode_plus(
            "HuggingFace is solving NLP one commit at a time",
            max_length=6,
            return_tensors=returned_tensor,
            return_overflowing_tokens=True,
        )

        for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
            self.assertEqual(len(tokens[key].shape), 2)

        # Mono sample
        tokens = tokenizer.batch_encode_plus(
            ["HuggingFace is solving NLP one commit at a time"],
            max_length=6,
            pad_to_max_len=True,
            return_tensors=returned_tensor,
            return_overflowing_tokens=True,
        )

        for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
            self.assertEqual(len(tokens[key].shape), 2)
            self.assertEqual(tokens[key].shape[-1], 6)

        # Multi sample
        tokens = tokenizer.batch_encode_plus(
            ["HuggingFace is solving NLP one commit at a time", "Very tiny input"],
            max_length=6,
            pad_to_max_len=True,
            return_tensors=returned_tensor,
            return_overflowing_tokens=True,
        )

        for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
            self.assertEqual(len(tokens[key].shape), 2)
            self.assertEqual(tokens[key].shape[-1], 6)

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
    def assert_build_inputs_with_special_tokens(self, tokenizer_r, tokenizer_p):
        # Input string
        input_simple = tokenizer_p.tokenize("This is a sample input")
        input_pair = tokenizer_p.tokenize("This is a sample pair")

        # Generate output
        output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple)
        output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple)
        self.assertEqual(output_p, output_r)

        # Generate pair output
        output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair)
        output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair)
        self.assertEqual(output_p, output_r)

        # Input tokens id
        input_simple = tokenizer_p.encode("This is a sample input")
        input_pair = tokenizer_p.encode("This is a sample pair")

        # Generate output
        output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple)
        output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple)
        self.assertEqual(output_p, output_r)

        # Generate pair output
        output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair)
        output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair)
        self.assertEqual(output_p, output_r)

261
262
263
264
265
266
267
268
269
270
271
272
273
274
    def assert_save_pretrained(self, tokenizer_r, tokenizer_p):

        # Checks it save with the same files
        self.assertSequenceEqual(tokenizer_r.save_vocabulary("."), tokenizer_p.save_vocabulary("."))

        # Checks everything loads correctly in the same way
        tokenizer_rp, tokenizer_pp = tokenizer_r.from_pretrained("."), tokenizer_p.from_pretrained(".")

        # Check special tokens are set accordingly on Rust and Python
        for key in tokenizer_pp.special_tokens_map:
            self.assertTrue(hasattr(tokenizer_rp, key))
            # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
            # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
    def test_bert(self):
        for tokenizer_name in BertTokenizer.pretrained_vocab_files_map["vocab_file"].keys():
            tokenizer_p = BertTokenizer.from_pretrained(tokenizer_name)
            tokenizer_r = BertTokenizerFast.from_pretrained(tokenizer_name)

            # Check we have the same number of added_tokens for both pair and non-pair inputs.
            self.assertEqual(tokenizer_r.num_added_tokens(False), tokenizer_p.num_added_tokens(False))
            self.assertEqual(tokenizer_r.num_added_tokens(True), tokenizer_p.num_added_tokens(True))

            # Check we have the correct max_length for both pair and non-pair inputs.
            self.assertEqual(tokenizer_r.max_len_single_sentence, tokenizer_p.max_len_single_sentence)
            self.assertEqual(tokenizer_r.max_len_sentences_pair, tokenizer_p.max_len_sentences_pair)

            # Assert the set of special tokens match.
            self.assertSequenceEqual(
                tokenizer_p.special_tokens_map.items(),
                tokenizer_r.special_tokens_map.items(),
                "Bert tokenizers doesn't have the same set of special_tokens",
            )

            # Assure tokenization overlap between python and rust impl.
            self.assert_tokenization_python_rust_almost_equals(tokenizer_p, tokenizer_r, 0.0)

            # Ensure add_tokens and add_special_tokens return the correct vocab size
            self.assert_add_tokens(tokenizer_r)

            # Check for offsets mapping
            self.assert_offsets_mapping(tokenizer_r)

            # Check for dynamic encoding sequence handling in batch_encode_plus
            self.assert_batch_encode_dynamic_overflowing(tokenizer_r)

307
308
309
            # Check alignment for build_inputs_with_special_tokens
            self.assert_build_inputs_with_special_tokens(tokenizer_r, tokenizer_p)

310
            # Check the number of returned files for save_vocabulary
311
            self.assert_save_pretrained(tokenizer_r, tokenizer_p)
312

313
314
315
            # Check for padding
            self.assert_padding(tokenizer_r, tokenizer_p)

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
    @require_torch
    def test_transfoxl(self):
        for tokenizer_name in TransfoXLTokenizer.pretrained_vocab_files_map["pretrained_vocab_file"].keys():
            tokenizer_p = TransfoXLTokenizer.from_pretrained(tokenizer_name)
            tokenizer_r = TransfoXLTokenizerFast.from_pretrained(tokenizer_name)

            # Check we have the same number of added_tokens for both pair and non-pair inputs.
            self.assertEqual(tokenizer_r.num_added_tokens(False), tokenizer_p.num_added_tokens(False))
            self.assertEqual(tokenizer_r.num_added_tokens(True), tokenizer_p.num_added_tokens(True))

            # Check we have the correct max_length for both pair and non-pair inputs.
            self.assertEqual(tokenizer_r.max_len_single_sentence, tokenizer_p.max_len_single_sentence)
            self.assertEqual(tokenizer_r.max_len_sentences_pair, tokenizer_p.max_len_sentences_pair)

            # Assert the set of special tokens match.
            self.assertSequenceEqual(
                tokenizer_p.special_tokens_map.items(),
                tokenizer_r.special_tokens_map.items(),
                "TransfoXL tokenizers doesn't have the same set of special_tokens",
            )

            # Assure tokenization overlap between python and rust impl.
            self.assert_tokenization_python_rust_almost_equals(tokenizer_p, tokenizer_r, 0.0)

            # Ensure add_tokens and add_special_tokens return the correct vocab size
            self.assert_add_tokens(tokenizer_r)

            # Check for offsets mapping
            self.assert_offsets_mapping(tokenizer_r)

            # Check for dynamic encoding sequence handling in batch_encode_plus
            self.assertRaises(ValueError, self.assert_batch_encode_dynamic_overflowing, tokenizer_r)

349
350
351
            # Check alignment for build_inputs_with_special_tokens
            self.assert_build_inputs_with_special_tokens(tokenizer_r, tokenizer_p)

352
353
354
            # Check for padding
            self.assertRaises(ValueError, self.assert_padding, tokenizer_r, tokenizer_p)

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
            # Check the number of returned files for save_vocabulary
            # TransfoXL tokenizers comes in a special format which is not compatible at all
            # with rust tokenizers. We ensure the errors detection at correctly raised
            tokenizer_r_files = tokenizer_r.save_pretrained(".")
            self.assertSequenceEqual(
                tokenizer_r_files, ["./vocab.json", "./special_tokens_map.json", "./added_tokens.json"]
            )

            # Check loading Python-tokenizer save through Rust doesnt work (and the opposite)
            self.assertRaises(ValueError, tokenizer_p.from_pretrained, *tokenizer_r_files)
            self.assertRaises(ValueError, tokenizer_r.from_pretrained, *tokenizer_p.save_pretrained("."))

            # Check loading works for Python to Python and Rust to Rust
            # Issue: https://github.com/huggingface/transformers/issues/3000
            # self.assertIsNotNone(tokenizer_p.__class__.from_pretrained('./'))
            self.assertIsNotNone(tokenizer_r.__class__.from_pretrained("./"))

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
    def test_distilbert(self):
        for tokenizer_name in DistilBertTokenizer.pretrained_vocab_files_map["vocab_file"].keys():
            tokenizer_p = DistilBertTokenizer.from_pretrained(tokenizer_name)
            tokenizer_r = DistilBertTokenizerFast.from_pretrained(tokenizer_name)

            # Check we have the same number of added_tokens for both pair and non-pair inputs.
            self.assertEqual(tokenizer_r.num_added_tokens(False), tokenizer_p.num_added_tokens(False))
            self.assertEqual(tokenizer_r.num_added_tokens(True), tokenizer_p.num_added_tokens(True))

            # Check we have the correct max_length for both pair and non-pair inputs.
            self.assertEqual(tokenizer_r.max_len_single_sentence, tokenizer_p.max_len_single_sentence)
            self.assertEqual(tokenizer_r.max_len_sentences_pair, tokenizer_p.max_len_sentences_pair)

            # DistilBert should match 100%
            # Assert the set of special tokens match.
            self.assertSequenceEqual(
                tokenizer_p.special_tokens_map.items(),
                tokenizer_r.special_tokens_map.items(),
                "DistilBert tokenizers doesn't have the same set of special_tokens",
            )

            # Assure tokenization overlap between python and rust impl.
            self.assert_tokenization_python_rust_almost_equals(tokenizer_p, tokenizer_r, 0.0)

            # Ensure add_tokens and add_special_tokens return the correct vocab size
            self.assert_add_tokens(tokenizer_r)

            # Check for offsets mapping
            self.assert_offsets_mapping(tokenizer_r)

            # Check for dynamic encoding sequence handling in batch_encode_plus
            self.assert_batch_encode_dynamic_overflowing(tokenizer_r)

405
406
407
            # Check alignment for build_inputs_with_special_tokens
            self.assert_build_inputs_with_special_tokens(tokenizer_r, tokenizer_p)

408
            # Check the number of returned files for save_vocabulary
409
            self.assert_save_pretrained(tokenizer_r, tokenizer_p)
410

411
412
413
            # Check for padding
            self.assert_padding(tokenizer_r, tokenizer_p)

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
    def test_gpt2(self):
        for tokenizer_name in GPT2Tokenizer.pretrained_vocab_files_map["vocab_file"].keys():
            tokenizer_p = GPT2Tokenizer.from_pretrained(tokenizer_name)
            tokenizer_r = GPT2TokenizerFast.from_pretrained(tokenizer_name)

            # Check we have the same number of added_tokens for both pair and non-pair inputs.
            self.assertEqual(tokenizer_r.num_added_tokens(False), tokenizer_p.num_added_tokens(False))
            self.assertEqual(tokenizer_r.num_added_tokens(True), tokenizer_p.num_added_tokens(True))

            # Check we have the correct max_length for both pair and non-pair inputs.
            self.assertEqual(tokenizer_r.max_len_single_sentence, tokenizer_p.max_len_single_sentence)
            self.assertEqual(tokenizer_r.max_len_sentences_pair, tokenizer_p.max_len_sentences_pair)

            # Assert the set of special tokens match.
            self.assertSequenceEqual(
                tokenizer_p.special_tokens_map.items(),
                tokenizer_r.special_tokens_map.items(),
                "GPT2 tokenizers doesn't have the same set of special_tokens",
            )

            # Assure tokenization overlap between python and rust impl.
            self.assert_tokenization_python_rust_almost_equals(tokenizer_p, tokenizer_r, 0.0)

            # Ensure add_tokens and add_special_tokens return the correct vocab size
            self.assert_add_tokens(tokenizer_r)

            # Check for offsets mapping
            self.assert_offsets_mapping(tokenizer_r)

            # Check for dynamic encoding sequence handling in batch_encode_plus
            self.assertRaises(ValueError, self.assert_batch_encode_dynamic_overflowing, tokenizer_r)

446
447
448
            # Check alignment for build_inputs_with_special_tokens
            self.assert_build_inputs_with_special_tokens(tokenizer_r, tokenizer_p)

449
            # Check the number of returned files for save_vocabulary
450
            self.assert_save_pretrained(tokenizer_r, tokenizer_p)
451

452
453
454
            # Check for padding
            self.assertRaises(ValueError, self.assert_padding, tokenizer_r, tokenizer_p)

455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
    def test_roberta(self):
        for tokenizer_name in RobertaTokenizer.pretrained_vocab_files_map["vocab_file"].keys():
            tokenizer_p = RobertaTokenizer.from_pretrained(tokenizer_name)
            tokenizer_r = RobertaTokenizerFast.from_pretrained(tokenizer_name)

            # Check we have the same number of added_tokens for both pair and non-pair inputs.
            self.assertEqual(tokenizer_r.num_added_tokens(False), tokenizer_p.num_added_tokens(False))
            self.assertEqual(tokenizer_r.num_added_tokens(True), tokenizer_p.num_added_tokens(True))

            # Check we have the correct max_length for both pair and non-pair inputs.
            self.assertEqual(tokenizer_r.max_len_single_sentence, tokenizer_p.max_len_single_sentence)
            self.assertEqual(tokenizer_r.max_len_sentences_pair, tokenizer_p.max_len_sentences_pair)

            # Assert the set of special tokens match.
            self.assertSequenceEqual(
                tokenizer_p.special_tokens_map.items(),
                tokenizer_r.special_tokens_map.items(),
                "Roberta tokenizers doesn't have the same set of special_tokens",
            )

            # Assure tokenization overlap between python and rust impl.
            self.assert_tokenization_python_rust_almost_equals(tokenizer_p, tokenizer_r, 0.01)

            # Ensure add_tokens and add_special_tokens return the correct vocab size
            self.assert_add_tokens(tokenizer_r)

            # Check for offsets mapping
            self.assert_offsets_mapping(tokenizer_r)

            # Check for dynamic encoding sequence handling in batch_encode_plus
            self.assert_batch_encode_dynamic_overflowing(tokenizer_r)

487
488
489
            # Check alignment for build_inputs_with_special_tokens
            self.assert_build_inputs_with_special_tokens(tokenizer_r, tokenizer_p)

490
            # Check the number of returned files for save_vocabulary
491
            self.assert_save_pretrained(tokenizer_r, tokenizer_p)
492

493
494
495
496
            # Check for padding
            # TODO: Re-enable this test as soon as Roberta align with the python tokenizer.
            # self.assert_padding(tokenizer_r, tokenizer_p)

497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
    def test_openai(self):
        for tokenizer_name in OpenAIGPTTokenizer.pretrained_vocab_files_map["vocab_file"].keys():
            tokenizer_p = OpenAIGPTTokenizer.from_pretrained(tokenizer_name)
            tokenizer_r = OpenAIGPTTokenizerFast.from_pretrained(tokenizer_name)

            # Check we have the same number of added_tokens for both pair and non-pair inputs.
            self.assertEqual(tokenizer_r.num_added_tokens(False), tokenizer_p.num_added_tokens(False))
            self.assertEqual(tokenizer_r.num_added_tokens(True), tokenizer_p.num_added_tokens(True))

            # Check we have the correct max_length for both pair and non-pair inputs.
            self.assertEqual(tokenizer_r.max_len_single_sentence, tokenizer_p.max_len_single_sentence)
            self.assertEqual(tokenizer_r.max_len_sentences_pair, tokenizer_p.max_len_sentences_pair)

            # Assert the set of special tokens match.
            self.assertSequenceEqual(
                tokenizer_p.special_tokens_map.items(),
                tokenizer_r.special_tokens_map.items(),
                "GPT tokenizers doesn't have the same set of special_tokens",
            )

            # Assure tokenization overlap between python and rust impl.
            self.assert_tokenization_python_rust_almost_equals(tokenizer_p, tokenizer_r, 0.0)

            # Ensure add_tokens and add_special_tokens return the correct vocab size
            self.assert_add_tokens(tokenizer_r)

            # Check for offsets mapping
            self.assert_offsets_mapping(tokenizer_r)

            # Check for dynamic encoding sequence handling in batch_encode_plus
            self.assertRaises(ValueError, self.assert_batch_encode_dynamic_overflowing, tokenizer_r)

529
530
531
            # Check alignment for build_inputs_with_special_tokens
            self.assert_build_inputs_with_special_tokens(tokenizer_r, tokenizer_p)

532
533
            self.assertEqual(len(tokenizer_r.save_vocabulary(".")), len(tokenizer_p.save_vocabulary(".")))

534
535
536
            # Check for padding
            self.assertRaises(ValueError, self.assert_padding, tokenizer_r, tokenizer_p)

537
538
            # Check the number of returned files for save_vocabulary
            self.assert_save_pretrained(tokenizer_r, tokenizer_p)