"...lm-evaluation-harness.git" did not exist on "c827e4ce23e84c162019652cb6a7fa89815c7725"
test_tokenization_fast.py 29.4 KB
Newer Older
1
import logging
2
import unittest
Funtowicz Morgan's avatar
Funtowicz Morgan committed
3
4
from collections import namedtuple
from itertools import takewhile
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

from tests.utils import require_torch
from transformers import (
    BertTokenizer,
    BertTokenizerFast,
    DistilBertTokenizer,
    GPT2Tokenizer,
    GPT2TokenizerFast,
    OpenAIGPTTokenizer,
    PreTrainedTokenizer,
    RobertaTokenizer,
    TransfoXLTokenizer,
    is_torch_available,
)
from transformers.tokenization_distilbert import DistilBertTokenizerFast
from transformers.tokenization_openai import OpenAIGPTTokenizerFast
from transformers.tokenization_roberta import RobertaTokenizerFast
from transformers.tokenization_transfo_xl import TransfoXLTokenizerFast


25
26
27
28
logging.basicConfig(level=logging.INFO)

logger = logging.getLogger(__name__)

Funtowicz Morgan's avatar
Funtowicz Morgan committed
29
30
31
NON_ENGLISH_TAGS = ["chinese", "dutch", "french", "finnish", "german", "multilingual"]
Tokenizer = namedtuple("Tokenizer", ["name", "rust_cls", "python_cls", "vocab_key", "filter"])

32

Funtowicz Morgan's avatar
Funtowicz Morgan committed
33
34
35
def filter_non_english(_: Tokenizer, pretrained_name: str):
    """ Filter all the model for non-english language """
    return not any([lang in pretrained_name for lang in NON_ENGLISH_TAGS])
36
37


Funtowicz Morgan's avatar
Funtowicz Morgan committed
38
39
def filter_roberta_detectors(_: Tokenizer, pretrained_name: str):
    return "detector" not in pretrained_name
40
41


Funtowicz Morgan's avatar
Funtowicz Morgan committed
42
class CommonFastTokenizerTest(unittest.TestCase):
43

Funtowicz Morgan's avatar
Funtowicz Morgan committed
44
45
46
47
48
    TOKENIZERS_CLASSES = frozenset([])

    def setUp(self) -> None:
        with open("tests/fixtures/sample_text.txt", encoding="utf-8") as f_data:
            self._data = f_data.read().replace("\n\n", "\n").strip()
49

Funtowicz Morgan's avatar
Funtowicz Morgan committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    def test_all_tokenizers(self):
        for tok_case in self.TOKENIZERS_CLASSES:
            for pretrained_name in tok_case.python_cls.pretrained_vocab_files_map[tok_case.vocab_key].keys():

                # Tokenizer.filter makes it possible to filter which Tokenizer to case based on all the
                # information available in Tokenizer (name, rust class, python class, vocab key name)
                if tok_case.filter is None or (
                    tok_case.filter is not None and tok_case.filter(tok_case, pretrained_name)
                ):
                    with self.subTest("{} ({})".format(tok_case.name, pretrained_name)):
                        tokenizer_r = tok_case.rust_cls.from_pretrained(pretrained_name)
                        tokenizer_p = tok_case.python_cls.from_pretrained(pretrained_name)

                        self.fast_align_python(tokenizer_r, tokenizer_p)
                        self.fast_only(tokenizer_r)

    def fast_align_python(self, tokenizer_r, tokenizer_p):
        # Check is_fast is set correctly
        self.assertFalse(tokenizer_p.is_fast)
        self.assertTrue(tokenizer_r.is_fast)

        # Check that Rust and Python align
        self.assert_tokenization_python_rust_equals(tokenizer_r, tokenizer_p)
        self.assert_num_special_tokens_to_add_equal(tokenizer_r, tokenizer_p)
        self.assert_max_length_equal(tokenizer_r, tokenizer_p)
        self.assert_special_tokens_map_equal(tokenizer_r, tokenizer_p)
        self.assert_embeded_special_tokens(tokenizer_r, tokenizer_p)
        self.assert_padding(tokenizer_r, tokenizer_p)
78
        self.assert_create_token_type_ids(tokenizer_r, tokenizer_p)
Funtowicz Morgan's avatar
Funtowicz Morgan committed
79
80
81
82
83
84
85
86
87
88
89
90
91
        # TODO: enable for v3.0.0
        # self.assert_empty_output_no_special_tokens(tokenizer_r, tokenizer_p)

    def fast_only(self, tokenizer_r):
        # Ensure None raise an error
        self.assertRaises(ValueError, tokenizer_r.tokenize, None)
        self.assertRaises(ValueError, tokenizer_r.encode, None)
        self.assertRaises(ValueError, tokenizer_r.encode_plus, None)
        self.assertRaises(ValueError, tokenizer_r.batch_encode_plus, None)

        self.assert_add_tokens(tokenizer_r)
        self.assert_offsets_mapping(tokenizer_r)
        self.assert_add_special_tokens(tokenizer_r)
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
        self.assert_alignement_methods(tokenizer_r)

    def assert_alignement_methods(self, tokenizer_r):
        words = ["Wonderful", "no", "inspiration", "example", "with", "subtoken"]
        text = " ".join(words)
        batch_size = 3

        encoding = tokenizer_r.encode_plus(text, add_special_tokens=False)

        batch_encoding = tokenizer_r.batch_encode_plus([text] * batch_size, add_special_tokens=False)
        num_tokens = len(encoding["input_ids"])

        last_word_index = len(words) - 1
        last_token_index = num_tokens - 1
        last_batch_index = batch_size - 1
        last_char_index = len(text) - 1

        # words, tokens
        self.assertEqual(len(encoding.words(0)), num_tokens)
        self.assertEqual(max(encoding.words(0)), last_word_index)
        self.assertEqual(min(encoding.words(0)), 0)
        self.assertEqual(len(batch_encoding.words(last_batch_index)), num_tokens)
        self.assertEqual(max(batch_encoding.words(last_batch_index)), last_word_index)
        self.assertEqual(min(batch_encoding.words(last_batch_index)), 0)
        self.assertEqual(len(encoding.tokens(0)), num_tokens)

        # Assert token_to_word
        self.assertEqual(encoding.token_to_word(0), 0)
        self.assertEqual(encoding.token_to_word(0, 0), 0)
        self.assertEqual(encoding.token_to_word(last_token_index), last_word_index)
        self.assertEqual(encoding.token_to_word(0, last_token_index), last_word_index)
        self.assertEqual(batch_encoding.token_to_word(1, 0), 0)
        self.assertEqual(batch_encoding.token_to_word(0, last_token_index), last_word_index)
        self.assertEqual(batch_encoding.token_to_word(last_batch_index, last_token_index), last_word_index)

        # Assert word_to_tokens
        self.assertEqual(encoding.word_to_tokens(0).start, 0)
        self.assertEqual(encoding.word_to_tokens(0, 0).start, 0)
        self.assertEqual(encoding.word_to_tokens(last_word_index).end, last_token_index + 1)
        self.assertEqual(encoding.word_to_tokens(0, last_word_index).end, last_token_index + 1)
        self.assertEqual(batch_encoding.word_to_tokens(1, 0).start, 0)
        self.assertEqual(batch_encoding.word_to_tokens(0, last_word_index).end, last_token_index + 1)
        self.assertEqual(batch_encoding.word_to_tokens(last_batch_index, last_word_index).end, last_token_index + 1)

        # Assert token_to_chars
        self.assertEqual(encoding.token_to_chars(0).start, 0)
        self.assertEqual(encoding.token_to_chars(0, 0).start, 0)
        self.assertEqual(encoding.token_to_chars(last_token_index).end, last_char_index + 1)
        self.assertEqual(encoding.token_to_chars(0, last_token_index).end, last_char_index + 1)
        self.assertEqual(batch_encoding.token_to_chars(1, 0).start, 0)
        self.assertEqual(batch_encoding.token_to_chars(0, last_token_index).end, last_char_index + 1)
        self.assertEqual(batch_encoding.token_to_chars(last_batch_index, last_token_index).end, last_char_index + 1)

        # Assert char_to_token
        self.assertEqual(encoding.char_to_token(0), 0)
        self.assertEqual(encoding.char_to_token(0, 0), 0)
        self.assertEqual(encoding.char_to_token(last_char_index), last_token_index)
        self.assertEqual(encoding.char_to_token(0, last_char_index), last_token_index)
        self.assertEqual(batch_encoding.char_to_token(1, 0), 0)
        self.assertEqual(batch_encoding.char_to_token(0, last_char_index), last_token_index)
        self.assertEqual(batch_encoding.char_to_token(last_batch_index, last_char_index), last_token_index)

        # Assert char_to_word
        self.assertEqual(encoding.char_to_word(0), 0)
        self.assertEqual(encoding.char_to_word(0, 0), 0)
        self.assertEqual(encoding.char_to_word(last_char_index), last_word_index)
        self.assertEqual(encoding.char_to_word(0, last_char_index), last_word_index)
        self.assertEqual(batch_encoding.char_to_word(1, 0), 0)
        self.assertEqual(batch_encoding.char_to_word(0, last_char_index), last_word_index)
        self.assertEqual(batch_encoding.char_to_word(last_batch_index, last_char_index), last_word_index)

        # Assert word_to_chars
        self.assertEqual(encoding.word_to_chars(0).start, 0)
        self.assertEqual(encoding.word_to_chars(0, 0).start, 0)
        self.assertEqual(encoding.word_to_chars(last_word_index).end, last_char_index + 1)
        self.assertEqual(encoding.word_to_chars(0, last_word_index).end, last_char_index + 1)
        self.assertEqual(batch_encoding.word_to_chars(1, 0).start, 0)
        self.assertEqual(batch_encoding.word_to_chars(0, last_word_index).end, last_char_index + 1)
        self.assertEqual(batch_encoding.word_to_chars(last_batch_index, last_word_index).end, last_char_index + 1)
Funtowicz Morgan's avatar
Funtowicz Morgan committed
171
172

    def assert_tokenization_python_rust_equals(self, tokenizer_p, tokenizer_r):
173
174
175
176
177
        # Ensure basic input match
        input_p = tokenizer_p.encode_plus(self._data)
        input_r = tokenizer_r.encode_plus(self._data)

        for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
Funtowicz Morgan's avatar
Funtowicz Morgan committed
178
            self.assertSequenceEqual(input_p[key], input_r[key])
179
180
181
182
183

        input_pairs_p = tokenizer_p.encode_plus(self._data, self._data)
        input_pairs_r = tokenizer_r.encode_plus(self._data, self._data)

        for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
Funtowicz Morgan's avatar
Funtowicz Morgan committed
184
            self.assertSequenceEqual(input_pairs_p[key], input_pairs_r[key])
185
186
187
188
189
190

        # Ensure truncation match
        input_p = tokenizer_p.encode_plus(self._data, max_length=512)
        input_r = tokenizer_r.encode_plus(self._data, max_length=512)

        for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
Funtowicz Morgan's avatar
Funtowicz Morgan committed
191
            self.assertSequenceEqual(input_p[key], input_r[key])
192
193
194
195
196
197

        # Ensure truncation with stride match
        input_p = tokenizer_p.encode_plus(self._data, max_length=512, stride=3, return_overflowing_tokens=True)
        input_r = tokenizer_r.encode_plus(self._data, max_length=512, stride=3, return_overflowing_tokens=True)

        for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
Funtowicz Morgan's avatar
Funtowicz Morgan committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
            self.assertSequenceEqual(input_p[key], input_r[key])

    def assert_num_special_tokens_to_add_equal(self, tokenizer_r, tokenizer_p):
        # Check we have the same number of added_tokens for both pair and non-pair inputs.
        self.assertEqual(tokenizer_r.num_special_tokens_to_add(False), tokenizer_p.num_special_tokens_to_add(False))
        self.assertEqual(tokenizer_r.num_special_tokens_to_add(True), tokenizer_p.num_special_tokens_to_add(True))

    def assert_max_length_equal(self, tokenizer_r, tokenizer_p):
        # Check we have the correct max_length for both pair and non-pair inputs.
        self.assertEqual(tokenizer_r.max_len_single_sentence, tokenizer_p.max_len_single_sentence)
        self.assertEqual(tokenizer_r.max_len_sentences_pair, tokenizer_p.max_len_sentences_pair)

    def assert_special_tokens_map_equal(self, tokenizer_r, tokenizer_p):
        # Assert the set of special tokens match.
        self.assertSequenceEqual(
            tokenizer_p.special_tokens_map.items(), tokenizer_r.special_tokens_map.items(),
214
215
        )

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
    def assert_add_tokens(self, tokenizer_r):
        vocab_size = tokenizer_r.vocab_size
        self.assertEqual(tokenizer_r.add_tokens(""), 0)
        self.assertEqual(tokenizer_r.add_tokens("testoken"), 1)
        self.assertEqual(tokenizer_r.add_tokens(["testoken1", "testtoken2"]), 2)
        self.assertEqual(len(tokenizer_r), vocab_size + 3)

        self.assertEqual(tokenizer_r.add_special_tokens({}), 0)
        self.assertRaises(
            AssertionError, tokenizer_r.add_special_tokens, {"additional_special_tokens": "<testtoken1>"}
        )
        self.assertEqual(tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken2>"]}), 1)
        self.assertEqual(
            tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken3>", "<testtoken4>"]}), 2
        )
        self.assertEqual(len(tokenizer_r), vocab_size + 6)

Funtowicz Morgan's avatar
Funtowicz Morgan committed
233
    def assert_offsets_mapping(self, tokenizer_r):
234
235
236
237
        text = "Wonderful no inspiration example with subtoken"
        pair = "Along with an awesome pair"

        # No pair
Funtowicz Morgan's avatar
Funtowicz Morgan committed
238
239
240
241
        tokens_with_offsets = tokenizer_r.encode_plus(
            text, return_special_tokens_mask=True, return_offsets_mapping=True, add_special_tokens=True
        )
        added_tokens = tokenizer_r.num_special_tokens_to_add(False)
242
243
244
245
246
247
248
249
250
        offsets = tokens_with_offsets["offset_mapping"]

        # Assert there is the same number of tokens and offsets
        self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"]))

        # Assert there is online added_tokens special_tokens
        self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens)

        # Pairs
Funtowicz Morgan's avatar
Funtowicz Morgan committed
251
252
        tokens_with_offsets = tokenizer_r.encode_plus(
            text, pair, return_special_tokens_mask=True, return_offsets_mapping=True, add_special_tokens=True
253
        )
Funtowicz Morgan's avatar
Funtowicz Morgan committed
254
        added_tokens = tokenizer_r.num_special_tokens_to_add(True)
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        offsets = tokens_with_offsets["offset_mapping"]

        # Assert there is the same number of tokens and offsets
        self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"]))

        # Assert there is online added_tokens special_tokens
        self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens)

    def assert_batch_encode_dynamic_overflowing(self, tokenizer: PreTrainedTokenizer):
        """
        When calling batch_encode with multiple sequence it can returns different number of
        overflowing encoding for each sequence:
        [
          Sequence 1: [Encoding 1, Encoding 2],
          Sequence 2: [Encoding 1],
          Sequence 3: [Encoding 1, Encoding 2, ... Encoding N]
        ]
        This needs to be padded so that it can represented as a tensor
        """
        returned_tensor = "pt" if is_torch_available() else "tf"

        tokens = tokenizer.encode_plus(
            "HuggingFace is solving NLP one commit at a time",
            max_length=6,
            return_tensors=returned_tensor,
            return_overflowing_tokens=True,
        )

        for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
            self.assertEqual(len(tokens[key].shape), 2)

        # Mono sample
        tokens = tokenizer.batch_encode_plus(
            ["HuggingFace is solving NLP one commit at a time"],
            max_length=6,
            pad_to_max_len=True,
            return_tensors=returned_tensor,
            return_overflowing_tokens=True,
        )

        for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
            self.assertEqual(len(tokens[key].shape), 2)
            self.assertEqual(tokens[key].shape[-1], 6)

        # Multi sample
        tokens = tokenizer.batch_encode_plus(
            ["HuggingFace is solving NLP one commit at a time", "Very tiny input"],
            max_length=6,
            pad_to_max_len=True,
            return_tensors=returned_tensor,
            return_overflowing_tokens=True,
        )

        for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
            self.assertEqual(len(tokens[key].shape), 2)
            self.assertEqual(tokens[key].shape[-1], 6)

312
313
314
315
316
317
318
319
320
321
322
323
324
325
    def assert_create_token_type_ids(self, tokenizer_r, tokenizer_p):
        input_simple = [1, 2, 3]
        input_pair = [1, 2, 3]

        # Generate output
        output_r = tokenizer_r.create_token_type_ids_from_sequences(input_simple)
        output_p = tokenizer_p.create_token_type_ids_from_sequences(input_simple)
        self.assertEqual(output_p, output_r)

        # Generate pair output
        output_r = tokenizer_r.create_token_type_ids_from_sequences(input_simple, input_pair)
        output_p = tokenizer_p.create_token_type_ids_from_sequences(input_simple, input_pair)
        self.assertEqual(output_p, output_r)

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
    def assert_build_inputs_with_special_tokens(self, tokenizer_r, tokenizer_p):
        # Input string
        input_simple = tokenizer_p.tokenize("This is a sample input")
        input_pair = tokenizer_p.tokenize("This is a sample pair")

        # Generate output
        output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple)
        output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple)
        self.assertEqual(output_p, output_r)

        # Generate pair output
        output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair)
        output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair)
        self.assertEqual(output_p, output_r)

        # Input tokens id
        input_simple = tokenizer_p.encode("This is a sample input")
        input_pair = tokenizer_p.encode("This is a sample pair")

        # Generate output
        output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple)
        output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple)
        self.assertEqual(output_p, output_r)

        # Generate pair output
        output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair)
        output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair)
        self.assertEqual(output_p, output_r)

Funtowicz Morgan's avatar
Funtowicz Morgan committed
355
356
    def assert_padding(self, tokenizer_r, tokenizer_p, max_length=15):
        def assert_padded_input_match(input_r: list, input_p: list, max_length: int):
357

Funtowicz Morgan's avatar
Funtowicz Morgan committed
358
359
            # Ensure we match max_length
            self.assertEqual(len(input_r), max_length), self.assertEqual(len(input_p), max_length)
360

Funtowicz Morgan's avatar
Funtowicz Morgan committed
361
362
363
364
            # Ensure the number of padded tokens is the same
            padded_tokens_r = list(takewhile(lambda i: i == tokenizer_r.pad_token_id, reversed(input_r)))
            padded_tokens_p = list(takewhile(lambda i: i == tokenizer_p.pad_token_id, reversed(input_p)))
            self.assertSequenceEqual(padded_tokens_r, padded_tokens_p)
365

Funtowicz Morgan's avatar
Funtowicz Morgan committed
366
367
368
369
        def assert_batch_padded_input_match(input_r: dict, input_p: dict):
            for i_r in input_r.values():
                self.assertEqual(len(i_r), 2), self.assertEqual(len(i_r[0]), 15), self.assertEqual(len(i_r[1]), 15)
                self.assertEqual(len(i_r), 2), self.assertEqual(len(i_r[0]), 15), self.assertEqual(len(i_r[1]), 15)
370

Funtowicz Morgan's avatar
Funtowicz Morgan committed
371
372
            for i_r, i_p in zip(input_r["input_ids"], input_p["input_ids"]):
                assert_padded_input_match(i_r, i_p, max_length)
373

Funtowicz Morgan's avatar
Funtowicz Morgan committed
374
375
            for i_r, i_p in zip(input_r["attention_mask"], input_p["attention_mask"]):
                self.assertSequenceEqual(i_r, i_p)
376

Funtowicz Morgan's avatar
Funtowicz Morgan committed
377
378
379
380
        # Simple input
        input_r = tokenizer_r.encode("This is a simple input", max_length=max_length, pad_to_max_length=True)
        input_p = tokenizer_p.encode("This is a simple input", max_length=max_length, pad_to_max_length=True)
        assert_padded_input_match(input_r, input_p, max_length)
381

Funtowicz Morgan's avatar
Funtowicz Morgan committed
382
383
384
385
386
387
388
389
        # Pair input
        input_r = tokenizer_r.encode(
            "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
        )
        input_p = tokenizer_p.encode(
            "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
        )
        assert_padded_input_match(input_r, input_p, max_length)
390

Funtowicz Morgan's avatar
Funtowicz Morgan committed
391
392
393
394
395
        # Simple input
        input_r = tokenizer_r.encode_plus("This is a simple input", max_length=max_length, pad_to_max_length=True)
        input_p = tokenizer_p.encode_plus("This is a simple input", max_length=max_length, pad_to_max_length=True)
        assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length)
        self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
396

Funtowicz Morgan's avatar
Funtowicz Morgan committed
397
398
399
400
401
402
403
404
405
        # Pair input
        input_r = tokenizer_r.encode_plus(
            "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
        )
        input_p = tokenizer_p.encode_plus(
            "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
        )
        assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length)
        self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
406

Funtowicz Morgan's avatar
Funtowicz Morgan committed
407
408
409
410
411
412
413
414
        # Simple input
        input_r = tokenizer_r.batch_encode_plus(
            ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, pad_to_max_length=True
        )
        input_p = tokenizer_p.batch_encode_plus(
            ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, pad_to_max_length=True
        )
        assert_batch_padded_input_match(input_r, input_p)
415

Funtowicz Morgan's avatar
Funtowicz Morgan committed
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
        # Pair input
        input_r = tokenizer_r.batch_encode_plus(
            [
                ("This is a simple input 1", "This is a simple input 2"),
                ("This is a simple pair 1", "This is a simple pair 2"),
            ],
            max_length=15,
            pad_to_max_length=True,
        )
        input_p = tokenizer_p.batch_encode_plus(
            [
                ("This is a simple input 1", "This is a simple input 2"),
                ("This is a simple pair 1", "This is a simple pair 2"),
            ],
            max_length=15,
            pad_to_max_length=True,
        )
        assert_batch_padded_input_match(input_r, input_p)
434

Funtowicz Morgan's avatar
Funtowicz Morgan committed
435
436
437
    def assert_save_pretrained(self, tokenizer_r, tokenizer_p):
        # Checks it save with the same files
        self.assertSequenceEqual(tokenizer_r.save_vocabulary("."), tokenizer_p.save_vocabulary("."))
438

Funtowicz Morgan's avatar
Funtowicz Morgan committed
439
440
        # Checks everything loads correctly in the same way
        tokenizer_rp, tokenizer_pp = tokenizer_r.from_pretrained("."), tokenizer_p.from_pretrained(".")
441

Funtowicz Morgan's avatar
Funtowicz Morgan committed
442
443
444
445
446
        # Check special tokens are set accordingly on Rust and Python
        for key in tokenizer_pp.special_tokens_map:
            self.assertTrue(hasattr(tokenizer_rp, key))
            # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
            # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
447

Funtowicz Morgan's avatar
Funtowicz Morgan committed
448
449
450
451
452
453
454
455
    def assert_embeded_special_tokens(self, tokenizer_r, tokenizer_p):
        sentence = "A, <mask> AllenNLP sentence."
        tokens_r = tokenizer_r.encode_plus(
            sentence, add_special_tokens=True, return_attention_mask=False, return_token_type_ids=True
        )
        tokens_p = tokenizer_p.encode_plus(
            sentence, add_special_tokens=True, return_attention_mask=False, return_token_type_ids=True
        )
456

Funtowicz Morgan's avatar
Funtowicz Morgan committed
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
        for key in tokens_p.keys():
            self.assertEqual(tokens_r[key], tokens_p[key])

        self.assertEqual(sum(tokens_r["token_type_ids"]), 0)
        self.assertEqual(sum(tokens_p["token_type_ids"]), 0)

        tokens_r = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"])
        tokens_p = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"])
        self.assertSequenceEqual(tokens_r, tokens_p)

    def assert_add_special_tokens(self, tokenizer_r):
        simple_num_special_tokens_to_add = tokenizer_r.num_special_tokens_to_add(pair=False)
        # pair_num_special_tokens_to_add = tokenizer_r.num_special_tokens_to_add(pair=True)

        for text in ["", " "]:
            # tokenize()
            no_special_tokens = tokenizer_r.tokenize(text, add_special_tokens=False)
            with_special_tokens = tokenizer_r.tokenize(text, add_special_tokens=True)
            self.assertEqual(len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add)

            # encode()
            no_special_tokens = tokenizer_r.encode(text, add_special_tokens=False)
            with_special_tokens = tokenizer_r.encode(text, add_special_tokens=True)
            self.assertEqual(len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add)

            # encode_plus()
            no_special_tokens = tokenizer_r.encode_plus(text, add_special_tokens=False)
            with_special_tokens = tokenizer_r.encode_plus(text, add_special_tokens=True)
            for key in no_special_tokens.keys():
                self.assertEqual(
                    len(no_special_tokens[key]), len(with_special_tokens[key]) - simple_num_special_tokens_to_add
                )

            # # batch_encode_plus
            no_special_tokens = tokenizer_r.batch_encode_plus([text, text], add_special_tokens=False)
            with_special_tokens = tokenizer_r.batch_encode_plus([text, text], add_special_tokens=True)
            for key in no_special_tokens.keys():
                for i_no, i_with in zip(no_special_tokens[key], with_special_tokens[key]):
                    self.assertEqual(len(i_no), len(i_with) - simple_num_special_tokens_to_add)


class WordPieceFastTokenizerTest(CommonFastTokenizerTest):
    """
    Override all the specific methods to test WordPiece behavior
    """

    TOKENIZERS_CLASSES = frozenset(
        [
            Tokenizer("Bert", BertTokenizerFast, BertTokenizer, "vocab_file", filter_non_english),
            Tokenizer("DistilBert", DistilBertTokenizerFast, DistilBertTokenizer, "vocab_file", filter_non_english),
        ]
    )

    def fast_only(self, tokenizer_r):
        super().fast_only(tokenizer_r)
        self.assert_offsets_with_special_characters(tokenizer_r)

    def assert_add_special_tokens(self, tokenizer_r):
        super().assert_add_special_tokens(tokenizer_r)

    def assert_offsets_with_special_characters(self, tokenizer_r):
        sentence = "A, na茂ve [MASK] AllenNLP sentence."
        tokens = tokenizer_r.encode_plus(
            sentence,
            return_attention_mask=False,
            return_token_type_ids=False,
            return_offsets_mapping=True,
            add_special_tokens=True,
        )
526

Funtowicz Morgan's avatar
Funtowicz Morgan committed
527
528
529
530
531
532
533
534
535
536
537
        expected_results = [
            ((0, 1), "A"),
            ((1, 2), ","),
            ((3, 8), "naive"),  # BERT normalizes this away
            # Append MASK here after lower-casing
            ((16, 21), "Allen"),
            ((22, 24), "##NL"),
            ((24, 25), "##P"),
            ((26, 34), "sentence"),
            ((35, 36), "."),
        ]
538

Funtowicz Morgan's avatar
Funtowicz Morgan committed
539
540
541
        # Check if the tokenizer is uncased
        if tokenizer_r.init_kwargs.get("do_lower_case"):
            expected_results = [(offset, token.lower()) for (offset, token) in expected_results]
542

Funtowicz Morgan's avatar
Funtowicz Morgan committed
543
544
545
546
        # Append the special tokens
        expected_results.insert(3, ((9, 15), "[MASK]"))
        expected_results.insert(0, (None, "[CLS]"))
        expected_results.append((None, "[SEP]"))
547

Funtowicz Morgan's avatar
Funtowicz Morgan committed
548
549
        self.assertEqual([e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens["input_ids"]))
        # self.assertEqual([e[0] for e in expected_results], tokens["offset_mapping"])
550
551


Funtowicz Morgan's avatar
Funtowicz Morgan committed
552
553
554
555
class RobertaFastTokenizerTest(CommonFastTokenizerTest):
    TOKENIZERS_CLASSES = frozenset(
        [Tokenizer("Roberta", RobertaTokenizerFast, RobertaTokenizer, "vocab_file", filter_roberta_detectors)]
    )
556

Funtowicz Morgan's avatar
Funtowicz Morgan committed
557
558
559
560
    def assert_embeded_special_tokens(self, tokenizer_r, tokenizer_p):
        sentence = "A, <mask> AllenNLP sentence."
        tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
        tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
561

Funtowicz Morgan's avatar
Funtowicz Morgan committed
562
563
564
        # Rust correctly handles the space before the mask while python doesnt
        self.assertSequenceEqual(tokens_r["input_ids"], [0, 83, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
        self.assertSequenceEqual(tokens_p["input_ids"], [0, 83, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
565

Funtowicz Morgan's avatar
Funtowicz Morgan committed
566
567
        # token_type_ids should put 0 everywhere
        self.assertEquals(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"]))
568

Funtowicz Morgan's avatar
Funtowicz Morgan committed
569
570
571
572
573
        # attention_mask should put 1 everywhere, so sum over length should be 1
        self.assertEquals(
            sum(tokens_r["attention_mask"]) / len(tokens_r["attention_mask"]),
            sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]),
        )
574

Funtowicz Morgan's avatar
Funtowicz Morgan committed
575
576
577
        # Rust should have '臓' before <mask> which should be left as an entire token
        tokens_r = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"])
        self.assertSequenceEqual(tokens_r, ["<s>", "臓A", ",", "<mask>", "臓Allen", "N", "LP", "臓sentence", ".", "</s>"])
578

579

Funtowicz Morgan's avatar
Funtowicz Morgan committed
580
581
582
583
584
class NoPaddingTokenFastTokenizerMatchingTest(CommonFastTokenizerTest):
    TOKENIZERS_CLASSES = [
        Tokenizer("OpenAI GPT", OpenAIGPTTokenizerFast, OpenAIGPTTokenizer, "vocab_file", None),
        Tokenizer("GPT2", GPT2TokenizerFast, GPT2Tokenizer, "vocab_file", None),
    ]
585

Funtowicz Morgan's avatar
Funtowicz Morgan committed
586
587
588
589
590
591
592
593
594
    def assert_padding(self, tokenizer_r, tokenizer_p, max_length=15):
        # Simple input
        s = "This is a simple input"
        s2 = ["This is a simple input 1", "This is a simple input 2"]
        p = ("This is a simple input", "This is a pair")
        p2 = [
            ("This is a simple input 1", "This is a simple input 2"),
            ("This is a simple pair 1", "This is a simple pair 2"),
        ]
595

Funtowicz Morgan's avatar
Funtowicz Morgan committed
596
597
        # Simple input tests
        self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, pad_to_max_length=True)
598

Funtowicz Morgan's avatar
Funtowicz Morgan committed
599
600
        # Simple input
        self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, pad_to_max_length=True)
601

Funtowicz Morgan's avatar
Funtowicz Morgan committed
602
603
        # Simple input
        self.assertRaises(ValueError, tokenizer_r.batch_encode_plus, s2, max_length=max_length, pad_to_max_length=True)
604

Funtowicz Morgan's avatar
Funtowicz Morgan committed
605
606
        # Pair input
        self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, pad_to_max_length=True)
607

Funtowicz Morgan's avatar
Funtowicz Morgan committed
608
609
        # Pair input
        self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, pad_to_max_length=True)
610

Funtowicz Morgan's avatar
Funtowicz Morgan committed
611
612
        # Pair input
        self.assertRaises(ValueError, tokenizer_r.batch_encode_plus, p2, max_length=max_length, pad_to_max_length=True)
613

614

Funtowicz Morgan's avatar
Funtowicz Morgan committed
615
616
617
618
class TransfoXLFastTokenizerTest(NoPaddingTokenFastTokenizerMatchingTest):
    TOKENIZERS_CLASSES = frozenset(
        [Tokenizer("TransfoXL", TransfoXLTokenizerFast, TransfoXLTokenizer, "pretrained_vocab_file", None)]
    )
619

Funtowicz Morgan's avatar
Funtowicz Morgan committed
620
621
622
    @require_torch
    def test_all_tokenizers(self):
        super().test_all_tokenizers()