test_modeling_xlm.py 15.3 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

19
from transformers import is_torch_available
thomwolf's avatar
thomwolf committed
20

21
from .test_configuration_common import ConfigTester
22
from .test_modeling_common import ModelTesterMixin, ids_tensor
Aymeric Augustin's avatar
Aymeric Augustin committed
23
24
25
from .utils import CACHE_DIR, require_torch, slow, torch_device


26
if is_torch_available():
27
    import torch
28
29
30
31
32
33
34
35
    from transformers import (
        XLMConfig,
        XLMModel,
        XLMWithLMHeadModel,
        XLMForQuestionAnswering,
        XLMForSequenceClassification,
        XLMForQuestionAnsweringSimple,
    )
36
    from transformers.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_MAP
thomwolf's avatar
thomwolf committed
37
38


39
@require_torch
40
class XLMModelTest(ModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
41

42
43
44
45
46
47
48
49
50
51
52
    all_model_classes = (
        (
            XLMModel,
            XLMWithLMHeadModel,
            XLMForQuestionAnswering,
            XLMForSequenceClassification,
            XLMForQuestionAnsweringSimple,
        )
        if is_torch_available()
        else ()
    )
53
54
55
    all_generative_model_classes = (
        (XLMWithLMHeadModel,) if is_torch_available() else ()
    )  # TODO (PVP): Check other models whether language generation is also applicable
thomwolf's avatar
thomwolf committed
56

thomwolf's avatar
thomwolf committed
57
    class XLMModelTester(object):
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_input_lengths=True,
            use_token_type_ids=True,
            use_labels=True,
            gelu_activation=True,
            sinusoidal_embeddings=False,
            causal=False,
            asm=False,
            n_langs=2,
            vocab_size=99,
            n_special=0,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            summary_type="last",
            use_proj=True,
            scope=None,
88
            bos_token_id=0,
89
        ):
thomwolf's avatar
thomwolf committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_lengths = use_input_lengths
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.gelu_activation = gelu_activation
            self.sinusoidal_embeddings = sinusoidal_embeddings
            self.asm = asm
            self.n_langs = n_langs
            self.vocab_size = vocab_size
            self.n_special = n_special
            self.summary_type = summary_type
            self.causal = causal
            self.use_proj = use_proj
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.n_langs = n_langs
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.summary_type = summary_type
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope
119
            self.bos_token_id = bos_token_id
thomwolf's avatar
thomwolf committed
120
121
122

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
thomwolf's avatar
thomwolf committed
123
            input_mask = ids_tensor([self.batch_size, self.seq_length], 2).float()
thomwolf's avatar
thomwolf committed
124
125
126

            input_lengths = None
            if self.use_input_lengths:
127
128
129
                input_lengths = (
                    ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2
                )  # small variation of seq_length
thomwolf's avatar
thomwolf committed
130
131
132
133
134
135
136

            token_type_ids = None
            if self.use_token_type_ids:
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)

            sequence_labels = None
            token_labels = None
thomwolf's avatar
thomwolf committed
137
            is_impossible_labels = None
thomwolf's avatar
thomwolf committed
138
139
140
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
thomwolf's avatar
thomwolf committed
141
                is_impossible_labels = ids_tensor([self.batch_size], 2).float()
thomwolf's avatar
thomwolf committed
142
143

            config = XLMConfig(
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
                vocab_size=self.vocab_size,
                n_special=self.n_special,
                emb_dim=self.hidden_size,
                n_layers=self.num_hidden_layers,
                n_heads=self.num_attention_heads,
                dropout=self.hidden_dropout_prob,
                attention_dropout=self.attention_probs_dropout_prob,
                gelu_activation=self.gelu_activation,
                sinusoidal_embeddings=self.sinusoidal_embeddings,
                asm=self.asm,
                causal=self.causal,
                n_langs=self.n_langs,
                max_position_embeddings=self.max_position_embeddings,
                initializer_range=self.initializer_range,
                summary_type=self.summary_type,
                use_proj=self.use_proj,
160
                bos_token_id=self.bos_token_id,
161
162
163
164
165
166
167
168
169
170
171
172
            )

            return (
                config,
                input_ids,
                token_type_ids,
                input_lengths,
                sequence_labels,
                token_labels,
                is_impossible_labels,
                input_mask,
            )
thomwolf's avatar
thomwolf committed
173
174

        def check_loss_output(self, result):
175
176
177
178
179
180
181
182
183
184
185
186
187
            self.parent.assertListEqual(list(result["loss"].size()), [])

        def create_and_check_xlm_model(
            self,
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
            input_mask,
        ):
thomwolf's avatar
thomwolf committed
188
            model = XLMModel(config=config)
189
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
190
191
            model.eval()
            outputs = model(input_ids, lengths=input_lengths, langs=token_type_ids)
thomwolf's avatar
thomwolf committed
192
193
            outputs = model(input_ids, langs=token_type_ids)
            outputs = model(input_ids)
thomwolf's avatar
thomwolf committed
194
195
196
197
198
            sequence_output = outputs[0]
            result = {
                "sequence_output": sequence_output,
            }
            self.parent.assertListEqual(
199
200
201
202
203
204
205
206
207
208
209
210
211
212
                list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
            )

        def create_and_check_xlm_lm_head(
            self,
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
            input_mask,
        ):
thomwolf's avatar
thomwolf committed
213
            model = XLMWithLMHeadModel(config)
214
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
215
216
217
218
219
220
221
222
223
            model.eval()

            loss, logits = model(input_ids, token_type_ids=token_type_ids, labels=token_labels)

            result = {
                "loss": loss,
                "logits": logits,
            }

224
            self.parent.assertListEqual(list(result["loss"].size()), [])
thomwolf's avatar
thomwolf committed
225
            self.parent.assertListEqual(
226
227
228
229
230
231
232
233
234
235
236
237
238
239
                list(result["logits"].size()), [self.batch_size, self.seq_length, self.vocab_size]
            )

        def create_and_check_xlm_simple_qa(
            self,
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
            input_mask,
        ):
240
            model = XLMForQuestionAnsweringSimple(config)
241
            model.to(torch_device)
242
243
244
245
            model.eval()

            outputs = model(input_ids)

246
            outputs = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
247
248
249
250
251
252
253
            loss, start_logits, end_logits = outputs

            result = {
                "loss": loss,
                "start_logits": start_logits,
                "end_logits": end_logits,
            }
254
255
            self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
            self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
256
257
            self.check_loss_output(result)

258
259
260
261
262
263
264
265
266
267
268
        def create_and_check_xlm_qa(
            self,
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
            input_mask,
        ):
thomwolf's avatar
thomwolf committed
269
            model = XLMForQuestionAnswering(config)
270
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
271
272
273
            model.eval()

            outputs = model(input_ids)
thomwolf's avatar
thomwolf committed
274
            start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits = outputs
thomwolf's avatar
thomwolf committed
275

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
            outputs = model(
                input_ids,
                start_positions=sequence_labels,
                end_positions=sequence_labels,
                cls_index=sequence_labels,
                is_impossible=is_impossible_labels,
                p_mask=input_mask,
            )

            outputs = model(
                input_ids,
                start_positions=sequence_labels,
                end_positions=sequence_labels,
                cls_index=sequence_labels,
                is_impossible=is_impossible_labels,
            )
thomwolf's avatar
thomwolf committed
292

293
            (total_loss,) = outputs
thomwolf's avatar
thomwolf committed
294

295
            outputs = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
thomwolf's avatar
thomwolf committed
296

297
            (total_loss,) = outputs
thomwolf's avatar
thomwolf committed
298
299
300

            result = {
                "loss": total_loss,
301
302
303
304
                "start_top_log_probs": start_top_log_probs,
                "start_top_index": start_top_index,
                "end_top_log_probs": end_top_log_probs,
                "end_top_index": end_top_index,
thomwolf's avatar
thomwolf committed
305
306
307
                "cls_logits": cls_logits,
            }

308
            self.parent.assertListEqual(list(result["loss"].size()), [])
thomwolf's avatar
thomwolf committed
309
            self.parent.assertListEqual(
310
311
                list(result["start_top_log_probs"].size()), [self.batch_size, model.config.start_n_top]
            )
thomwolf's avatar
thomwolf committed
312
            self.parent.assertListEqual(
313
314
                list(result["start_top_index"].size()), [self.batch_size, model.config.start_n_top]
            )
315
316
            self.parent.assertListEqual(
                list(result["end_top_log_probs"].size()),
317
318
                [self.batch_size, model.config.start_n_top * model.config.end_n_top],
            )
319
320
            self.parent.assertListEqual(
                list(result["end_top_index"].size()),
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
                [self.batch_size, model.config.start_n_top * model.config.end_n_top],
            )
            self.parent.assertListEqual(list(result["cls_logits"].size()), [self.batch_size])

        def create_and_check_xlm_sequence_classif(
            self,
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
            input_mask,
        ):
thomwolf's avatar
thomwolf committed
336
            model = XLMForSequenceClassification(config)
337
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
338
339
340
341
342
343
344
345
346
347
            model.eval()

            (logits,) = model(input_ids)
            loss, logits = model(input_ids, labels=sequence_labels)

            result = {
                "loss": loss,
                "logits": logits,
            }

348
            self.parent.assertListEqual(list(result["loss"].size()), [])
thomwolf's avatar
thomwolf committed
349
            self.parent.assertListEqual(
350
351
                list(result["logits"].size()), [self.batch_size, self.type_sequence_label_size]
            )
thomwolf's avatar
thomwolf committed
352

thomwolf's avatar
thomwolf committed
353
354
        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
355
356
357
358
359
360
361
362
363
364
365
            (
                config,
                input_ids,
                token_type_ids,
                input_lengths,
                sequence_labels,
                token_labels,
                is_impossible_labels,
                input_mask,
            ) = config_and_inputs
            inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths}
thomwolf's avatar
thomwolf committed
366
            return config, inputs_dict
thomwolf's avatar
thomwolf committed
367

thomwolf's avatar
thomwolf committed
368
369
370
    def setUp(self):
        self.model_tester = XLMModelTest.XLMModelTester(self)
        self.config_tester = ConfigTester(self, config_class=XLMConfig, emb_dim=37)
thomwolf's avatar
thomwolf committed
371
372

    def test_config(self):
thomwolf's avatar
thomwolf committed
373
        self.config_tester.run_common_tests()
thomwolf's avatar
thomwolf committed
374

thomwolf's avatar
thomwolf committed
375
376
377
    def test_xlm_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
378

thomwolf's avatar
thomwolf committed
379
380
381
    def test_xlm_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_lm_head(*config_and_inputs)
thomwolf's avatar
thomwolf committed
382

383
384
385
386
    def test_xlm_simple_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_simple_qa(*config_and_inputs)

thomwolf's avatar
thomwolf committed
387
388
389
    def test_xlm_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_qa(*config_and_inputs)
thomwolf's avatar
thomwolf committed
390

thomwolf's avatar
thomwolf committed
391
392
393
    def test_xlm_sequence_classif(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_sequence_classif(*config_and_inputs)
thomwolf's avatar
thomwolf committed
394

395
    @slow
thomwolf's avatar
thomwolf committed
396
397
    def test_model_from_pretrained(self):
        for model_name in list(XLM_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
398
            model = XLMModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
thomwolf's avatar
thomwolf committed
399
            self.assertIsNotNone(model)
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444


def prepare_generation_special_tokens():
    return {"bos_token_id": 0, "pad_token_id": 2}


class XLMModelLanguageGenerationTest(unittest.TestCase):

    special_tokens = prepare_generation_special_tokens()

    @slow
    def test_lm_generate_xlm_mlm_en_2048(self):
        model = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048")
        input_ids = torch.Tensor([[1, 14, 2232, 26, 1]]).long()  # The dog is cute
        expected_output_ids = [
            1,
            14,
            2232,
            26,
            1,
            567,
            26,
            32,
            149,
            149,
            149,
            149,
            149,
            149,
            149,
            149,
            149,
            149,
            149,
            149,
        ]  # The dog is nothing is it!!!!!!!!!!!! TODO (PVP): this sentence (and others I tried) does not make much sense, there seems to be a problem with xlm language generation.
        torch.manual_seed(0)

        output_ids = model.generate(
            input_ids,
            bos_token_id=self.special_tokens["bos_token_id"],
            pad_token_id=self.special_tokens["pad_token_id"],
        )

        self.assertListEqual(output_ids[0].tolist(), expected_output_ids)