run_translation.py 25.7 KB
Newer Older
1
#!/usr/bin/env python
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# coding=utf-8
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for sequence to sequence.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.

import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional

import numpy as np
from datasets import load_dataset, load_metric

import transformers
from transformers import (
    AutoConfig,
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    DataCollatorForSeq2Seq,
    HfArgumentParser,
37
38
39
    M2M100Tokenizer,
    MBart50Tokenizer,
    MBart50TokenizerFast,
40
    MBartTokenizer,
41
    MBartTokenizerFast,
42
43
44
45
46
    Seq2SeqTrainer,
    Seq2SeqTrainingArguments,
    default_data_collator,
    set_seed,
)
47
from transformers.trainer_utils import get_last_checkpoint
48
from transformers.utils import check_min_version
49
from transformers.utils.versions import require_version
50
51


52
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre's avatar
Lysandre committed
53
check_min_version("4.8.0.dev0")
54
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/translation/requirements.txt")
55

56
57
logger = logging.getLogger(__name__)

58
59
60
# A list of all multilingual tokenizer which require src_lang and tgt_lang attributes.
MULTILINGUAL_TOKENIZERS = [MBartTokenizer, MBartTokenizerFast, MBart50Tokenizer, MBart50TokenizerFast, M2M100Tokenizer]

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

104
105
106
    source_lang: str = field(default=None, metadata={"help": "Source language id for translation."})
    target_lang: str = field(default=None, metadata={"help": "Target language id for translation."})

107
108
109
110
111
112
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
113
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a jsonlines)."})
114
115
    validation_file: Optional[str] = field(
        default=None,
116
        metadata={
117
118
            "help": "An optional input evaluation data file to evaluate the metrics (sacreblue) on "
            "a jsonlines file."
119
120
121
122
123
        },
    )
    test_file: Optional[str] = field(
        default=None,
        metadata={
124
            "help": "An optional input test data file to evaluate the metrics (sacreblue) on " "a jsonlines file."
125
        },
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_source_length: Optional[int] = field(
        default=1024,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    max_target_length: Optional[int] = field(
        default=128,
        metadata={
            "help": "The maximum total sequence length for target text after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    val_max_target_length: Optional[int] = field(
149
        default=None,
150
151
        metadata={
            "help": "The maximum total sequence length for validation target text after tokenization. Sequences longer "
152
            "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
            "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
            "during ``evaluate`` and ``predict``."
        },
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
            "help": "Whether to pad all samples to model maximum sentence length. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
            "efficient on GPU but very bad for TPU."
        },
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
172
    max_eval_samples: Optional[int] = field(
173
174
        default=None,
        metadata={
175
            "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
176
177
178
            "value if set."
        },
    )
179
    max_predict_samples: Optional[int] = field(
180
181
        default=None,
        metadata={
182
            "help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
183
184
185
186
187
188
189
190
191
192
            "value if set."
        },
    )
    num_beams: Optional[int] = field(
        default=None,
        metadata={
            "help": "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
            "which is used during ``evaluate`` and ``predict``."
        },
    )
193
194
195
196
197
198
    ignore_pad_token_for_loss: bool = field(
        default=True,
        metadata={
            "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
        },
    )
199
200
201
    source_prefix: Optional[str] = field(
        default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
    )
202
203
204
205
206
207
208
209
    forced_bos_token: Optional[str] = field(
        default=None,
        metadata={
            "help": "The token to force as the first generated token after the :obj:`decoder_start_token_id`."
            "Useful for multilingual models like :doc:`mBART <../model_doc/mbart>` where the first generated token "
            "needs to be the target language token.(Usually it is the target language token)"
        },
    )
210
211
212
213

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
214
215
216
217
218
219
220
221
222
        elif self.source_lang is None or self.target_lang is None:
            raise ValueError("Need to specify the source language and the target language.")

        if self.train_file is not None:
            extension = self.train_file.split(".")[-1]
            assert extension == "json", "`train_file` should be a json file."
        if self.validation_file is not None:
            extension = self.validation_file.split(".")[-1]
            assert extension == "json", "`validation_file` should be a json file."
223
224
        if self.val_max_target_length is None:
            self.val_max_target_length = self.max_target_length
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    logger.setLevel(logging.INFO if training_args.should_log else logging.WARN)

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
    if training_args.should_log:
        transformers.utils.logging.set_verbosity_info()
    logger.info(f"Training/evaluation parameters {training_args}")

258
259
260
261
262
263
264
265
266
267
268
269
    if data_args.source_prefix is None and model_args.model_name_or_path in [
        "t5-small",
        "t5-base",
        "t5-large",
        "t5-3b",
        "t5-11b",
    ]:
        logger.warning(
            "You're running a t5 model but didn't provide a source prefix, which is expected, e.g. with "
            "`--source_prefix 'translate English to German: ' `"
        )

270
271
272
273
274
275
276
277
278
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
279
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
280
281
282
283
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
284
285
286
287

    # Set seed before initializing model.
    set_seed(training_args.seed)

288
    # Get the datasets: you can either provide your own JSON training and evaluation files (see below)
289
290
291
292
293
294
295
296
297
298
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For translation, only JSON files are supported, with one field named "translation" containing two keys for the
    # source and target languages (unless you adapt what follows).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
299
        datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir)
300
301
302
303
304
305
306
307
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
            extension = data_args.train_file.split(".")[-1]
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
            extension = data_args.validation_file.split(".")[-1]
308
309
310
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
311
        datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = AutoModelForSeq2SeqLM.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

Suraj Patil's avatar
Suraj Patil committed
342
343
    model.resize_token_embeddings(len(tokenizer))

344
    # Set decoder_start_token_id
345
346
347
348
349
350
    if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
        if isinstance(tokenizer, MBartTokenizer):
            model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.target_lang]
        else:
            model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.target_lang)

351
352
353
    if model.config.decoder_start_token_id is None:
        raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")

354
    prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
355

356
357
358
359
    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    if training_args.do_train:
        column_names = datasets["train"].column_names
360
    elif training_args.do_eval:
361
        column_names = datasets["validation"].column_names
362
363
364
365
366
    elif training_args.do_predict:
        column_names = datasets["test"].column_names
    else:
        logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
        return
367
368
369

    # For translation we set the codes of our source and target languages (only useful for mBART, the others will
    # ignore those attributes).
370
371
372
373
374
375
376
377
378
379
380
381
382
383
    if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)):
        assert data_args.target_lang is not None and data_args.source_lang is not None, (
            f"{tokenizer.__class__.__name__} is a multilingual tokenizer which requires --source_lang and "
            "--target_lang arguments."
        )

        tokenizer.src_lang = data_args.source_lang
        tokenizer.tgt_lang = data_args.target_lang

        # For multilingual translation models like mBART-50 and M2M100 we need to force the target language token
        # as the first generated token. We ask the user to explicitly provide this as --forced_bos_token argument.
        forced_bos_token_id = (
            tokenizer.lang_code_to_id[data_args.forced_bos_token] if data_args.forced_bos_token is not None else None
        )
384
        model.config.forced_bos_token_id = forced_bos_token_id
385

386
387
388
    # Get the language codes for input/target.
    source_lang = data_args.source_lang.split("_")[0]
    target_lang = data_args.target_lang.split("_")[0]
389
390
391
392
393

    # Temporarily set max_target_length for training.
    max_target_length = data_args.max_target_length
    padding = "max_length" if data_args.pad_to_max_length else False

394
    if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
395
        logger.warning(
396
397
398
399
            "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
            f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
        )

400
    def preprocess_function(examples):
401
402
        inputs = [ex[source_lang] for ex in examples["translation"]]
        targets = [ex[target_lang] for ex in examples["translation"]]
403
        inputs = [prefix + inp for inp in inputs]
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
        model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)

        # Setup the tokenizer for targets
        with tokenizer.as_target_tokenizer():
            labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True)

        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and data_args.ignore_pad_token_for_loss:
            labels["input_ids"] = [
                [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
            ]

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

    if training_args.do_train:
421
422
        if "train" not in datasets:
            raise ValueError("--do_train requires a train dataset")
423
        train_dataset = datasets["train"]
424
425
426
427
428
429
430
431
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))
        train_dataset = train_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
432
            desc="Running tokenizer on train dataset",
433
434
435
436
        )

    if training_args.do_eval:
        max_target_length = data_args.val_max_target_length
437
438
        if "validation" not in datasets:
            raise ValueError("--do_eval requires a validation dataset")
439
        eval_dataset = datasets["validation"]
440
441
        if data_args.max_eval_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
442
443
444
445
446
447
        eval_dataset = eval_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
448
            desc="Running tokenizer on validation dataset",
449
450
        )

451
452
    if training_args.do_predict:
        max_target_length = data_args.val_max_target_length
453
454
        if "test" not in datasets:
            raise ValueError("--do_predict requires a test dataset")
455
456
457
458
        predict_dataset = datasets["test"]
        if data_args.max_predict_samples is not None:
            predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
        predict_dataset = predict_dataset.map(
459
460
461
462
463
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
464
            desc="Running tokenizer on prediction dataset",
465
466
        )

467
468
469
470
471
    # Data collator
    label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    else:
472
473
        data_collator = DataCollatorForSeq2Seq(
            tokenizer,
474
            model=model,
475
476
477
            label_pad_token_id=label_pad_token_id,
            pad_to_multiple_of=8 if training_args.fp16 else None,
        )
478
479

    # Metric
480
    metric = load_metric("sacrebleu")
481

482
483
    def postprocess_text(preds, labels):
        preds = [pred.strip() for pred in preds]
484
        labels = [[label.strip()] for label in labels]
485
486
487

        return preds, labels

488
489
490
491
492
493
494
495
496
497
498
    def compute_metrics(eval_preds):
        preds, labels = eval_preds
        if isinstance(preds, tuple):
            preds = preds[0]
        decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
        if data_args.ignore_pad_token_for_loss:
            # Replace -100 in the labels as we can't decode them.
            labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
        decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

        # Some simple post-processing
499
        decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
500

501
502
        result = metric.compute(predictions=decoded_preds, references=decoded_labels)
        result = {"bleu": result["score"]}
503
504
505

        prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
        result["gen_len"] = np.mean(prediction_lens)
506
        result = {k: round(v, 4) for k, v in result.items()}
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
        return result

    # Initialize our Trainer
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics if training_args.predict_with_generate else None,
    )

    # Training
    if training_args.do_train:
522
523
524
525
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
526
527
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
528
529
        trainer.save_model()  # Saves the tokenizer too for easy upload

530
531
532
533
534
        metrics = train_result.metrics
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
535

536
537
538
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
539
540

    # Evaluation
541
    results = {}
542
543
544
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

545
        metrics = trainer.evaluate(
546
            max_length=data_args.val_max_target_length, num_beams=data_args.num_beams, metric_key_prefix="eval"
547
        )
548
549
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
550

551
552
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
553

554
    if training_args.do_predict:
555
        logger.info("*** Predict ***")
556

557
558
559
        predict_results = trainer.predict(
            predict_dataset,
            metric_key_prefix="predict",
560
561
562
            max_length=data_args.val_max_target_length,
            num_beams=data_args.num_beams,
        )
563
564
565
566
567
        metrics = predict_results.metrics
        max_predict_samples = (
            data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
        )
        metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
568

569
570
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
571

572
        if trainer.is_world_process_zero():
573
            if training_args.predict_with_generate:
574
575
                predictions = tokenizer.batch_decode(
                    predict_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
576
                )
577
578
                predictions = [pred.strip() for pred in predictions]
                output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt")
579
                with open(output_prediction_file, "w", encoding="utf-8") as writer:
580
                    writer.write("\n".join(predictions))
581

Sylvain Gugger's avatar
Sylvain Gugger committed
582
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
583
        kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "translation"}
Sylvain Gugger's avatar
Sylvain Gugger committed
584
585
586
587
588
589
590
591
592
593
594
595
596
        if data_args.dataset_name is not None:
            kwargs["dataset_tags"] = data_args.dataset_name
            if data_args.dataset_config_name is not None:
                kwargs["dataset_args"] = data_args.dataset_config_name
                kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
            else:
                kwargs["dataset"] = data_args.dataset_name

        languages = [l for l in [data_args.source_lang, data_args.target_lang] if l is not None]
        if len(languages) > 0:
            kwargs["language"] = languages

        trainer.push_to_hub(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
597

598
599
    return results

600
601
602
603
604
605
606
607

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()