run_squad.py 30.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet)."""
17
18
19
20
21
22
23

from __future__ import absolute_import, division, print_function

import argparse
import logging
import os
import random
thomwolf's avatar
thomwolf committed
24
import glob
25
import timeit
26
27
28
29
30
31
32

import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
from torch.utils.data.distributed import DistributedSampler

33
34
35
36
37
38
try:
    from torch.utils.tensorboard import SummaryWriter
except:
    from tensorboardX import SummaryWriter

from tqdm import tqdm, trange
39

40
from transformers import (WEIGHTS_NAME, BertConfig,
thomwolf's avatar
thomwolf committed
41
42
43
44
                                  BertForQuestionAnswering, BertTokenizer,
                                  XLMConfig, XLMForQuestionAnswering,
                                  XLMTokenizer, XLNetConfig,
                                  XLNetForQuestionAnswering,
45
46
                                  XLNetTokenizer,
                                  DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer)
thomwolf's avatar
thomwolf committed
47

48
from transformers import AdamW, get_linear_schedule_with_warmup
49

50
51
52
from utils_squad import (read_squad_examples, convert_examples_to_features,
                         RawResult, write_predictions,
                         RawResultExtended, write_predictions_extended)
53

thomwolf's avatar
thomwolf committed
54
55
56
# The follwing import is the official SQuAD evaluation script (2.0).
# You can remove it from the dependencies if you are using this script outside of the library
# We've added it here for automated tests (see examples/test_examples.py file)
57
58
from utils_squad_evaluate import EVAL_OPTS, main as evaluate_on_squad

59
60
logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
61
62
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) \
                  for conf in (BertConfig, XLNetConfig, XLMConfig)), ())
thomwolf's avatar
thomwolf committed
63
64

MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
65
66
67
    'bert': (BertConfig, BertForQuestionAnswering, BertTokenizer),
    'xlnet': (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer),
    'xlm': (XLMConfig, XLMForQuestionAnswering, XLMTokenizer),
68
    'distilbert': (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer)
thomwolf's avatar
thomwolf committed
69
70
}

thomwolf's avatar
thomwolf committed
71
72
73
74
75
76
77
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

78
79
def to_list(tensor):
    return tensor.detach().cpu().tolist()
thomwolf's avatar
thomwolf committed
80

81
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
82
83
84
85
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

86
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
87
88
89
90
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    if args.max_steps > 0:
91
        t_total = args.max_steps
thomwolf's avatar
thomwolf committed
92
93
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
94
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
95

96
    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
97
98
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
99
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
thomwolf's avatar
thomwolf committed
100
101
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]
102
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
103
    scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
thomwolf's avatar
thomwolf committed
104
105
106
107
108
109
110
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

111
112
113
114
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
115
116
117
118
119
120
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)

thomwolf's avatar
thomwolf committed
121
122
123
124
    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
125
126
127
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                   args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
thomwolf's avatar
thomwolf committed
128
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
129
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
130
131
132

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
133
134
135
136
137
138
139
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            model.train()
thomwolf's avatar
thomwolf committed
140
            batch = tuple(t.to(args.device) for t in batch)
141
            inputs = {'input_ids':       batch[0],
Simon Layton's avatar
Simon Layton committed
142
143
                      'attention_mask':  batch[1],
                      'start_positions': batch[3],
144
                      'end_positions':   batch[4]}
145
146
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2]
147
148
            if args.model_type in ['xlnet', 'xlm']:
                inputs.update({'cls_index': batch[5],
thomwolf's avatar
thomwolf committed
149
                               'p_mask':       batch[6]})
Peiqin Lin's avatar
typos  
Peiqin Lin committed
150
            outputs = model(**inputs)
151
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
thomwolf's avatar
thomwolf committed
152

153
            if args.n_gpu > 1:
thomwolf's avatar
thomwolf committed
154
                loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
155
156
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
thomwolf's avatar
thomwolf committed
157

158
159
160
161
162
163
164
165
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
166
167
168
169
170
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

171
                optimizer.step()
172
                scheduler.step()  # Update learning rate schedule
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
                            tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
                    tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
                    logger.info("Saving model checkpoint to %s", output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

thomwolf's avatar
thomwolf committed
203
204
205
    if args.local_rank in [-1, 0]:
        tb_writer.close()

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, prefix=""):
    dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)

    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
    eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
    eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    all_results = []
225
    start_time = timeit.default_timer()
226
227
228
229
230
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
            inputs = {'input_ids':      batch[0],
231
                      'attention_mask': batch[1]
thomwolf's avatar
thomwolf committed
232
                      }
233
234
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2]  # XLM don't use segment_ids
235
236
237
238
            example_indices = batch[3]
            if args.model_type in ['xlnet', 'xlm']:
                inputs.update({'cls_index': batch[4],
                               'p_mask':    batch[5]})
239
240
241
242
243
            outputs = model(**inputs)

        for i, example_index in enumerate(example_indices):
            eval_feature = features[example_index.item()]
            unique_id = int(eval_feature.unique_id)
244
245
246
247
248
249
250
251
252
253
254
255
256
            if args.model_type in ['xlnet', 'xlm']:
                # XLNet uses a more complex post-processing procedure
                result = RawResultExtended(unique_id            = unique_id,
                                           start_top_log_probs  = to_list(outputs[0][i]),
                                           start_top_index      = to_list(outputs[1][i]),
                                           end_top_log_probs    = to_list(outputs[2][i]),
                                           end_top_index        = to_list(outputs[3][i]),
                                           cls_logits           = to_list(outputs[4][i]))
            else:
                result = RawResult(unique_id    = unique_id,
                                   start_logits = to_list(outputs[0][i]),
                                   end_logits   = to_list(outputs[1][i]))
            all_results.append(result)
257

258
259
260
    evalTime = timeit.default_timer() - start_time
    logger.info("  Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset))

thomwolf's avatar
thomwolf committed
261
    # Compute predictions
262
263
    output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
    output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
264
265
266
267
    if args.version_2_with_negative:
        output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
    else:
        output_null_log_odds_file = None
268
269
270
271
272
273

    if args.model_type in ['xlnet', 'xlm']:
        # XLNet uses a more complex post-processing procedure
        write_predictions_extended(examples, features, all_results, args.n_best_size,
                        args.max_answer_length, output_prediction_file,
                        output_nbest_file, output_null_log_odds_file, args.predict_file,
274
275
                        model.config.start_n_top, model.config.end_n_top,
                        args.version_2_with_negative, tokenizer, args.verbose_logging)
276
277
278
279
280
    else:
        write_predictions(examples, features, all_results, args.n_best_size,
                        args.max_answer_length, args.do_lower_case, output_prediction_file,
                        output_nbest_file, output_null_log_odds_file, args.verbose_logging,
                        args.version_2_with_negative, args.null_score_diff_threshold)
281

thomwolf's avatar
thomwolf committed
282
    # Evaluate with the official SQuAD script
283
284
285
286
287
288
289
290
    evaluate_options = EVAL_OPTS(data_file=args.predict_file,
                                 pred_file=output_prediction_file,
                                 na_prob_file=output_null_log_odds_file)
    results = evaluate_on_squad(evaluate_options)
    return results


def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
VictorSanh's avatar
VictorSanh committed
291
    if args.local_rank not in [-1, 0] and not evaluate:
thomwolf's avatar
thomwolf committed
292
293
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

294
295
296
    # Load data features from cache or dataset file
    input_file = args.predict_file if evaluate else args.train_file
    cached_features_file = os.path.join(os.path.dirname(input_file), 'cached_{}_{}_{}'.format(
thomwolf's avatar
thomwolf committed
297
        'dev' if evaluate else 'train',
298
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
299
300
        str(args.max_seq_length)))
    if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
thomwolf's avatar
thomwolf committed
301
302
303
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
    else:
304
305
        logger.info("Creating features from dataset file at %s", input_file)
        examples = read_squad_examples(input_file=input_file,
306
307
                                                is_training=not evaluate,
                                                version_2_with_negative=args.version_2_with_negative)
308
309
310
311
312
        features = convert_examples_to_features(examples=examples,
                                                tokenizer=tokenizer,
                                                max_seq_length=args.max_seq_length,
                                                doc_stride=args.doc_stride,
                                                max_query_length=args.max_query_length,
313
314
315
316
317
                                                is_training=not evaluate,
                                                cls_token_segment_id=2 if args.model_type in ['xlnet'] else 0,
                                                pad_token_segment_id=3 if args.model_type in ['xlnet'] else 0,
                                                cls_token_at_end=True if args.model_type in ['xlnet'] else False,
                                                sequence_a_is_doc=True if args.model_type in ['xlnet'] else False)
thomwolf's avatar
thomwolf committed
318
319
320
321
        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
            torch.save(features, cached_features_file)

VictorSanh's avatar
VictorSanh committed
322
    if args.local_rank == 0 and not evaluate:
thomwolf's avatar
thomwolf committed
323
324
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

thomwolf's avatar
thomwolf committed
325
    # Convert to Tensors and build dataset
326
327
328
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
329
330
    all_cls_index = torch.tensor([f.cls_index for f in features], dtype=torch.long)
    all_p_mask = torch.tensor([f.p_mask for f in features], dtype=torch.float)
331
    if evaluate:
thomwolf's avatar
thomwolf committed
332
        all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
333
334
        dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                                all_example_index, all_cls_index, all_p_mask)
335
336
337
    else:
        all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long)
        all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long)
338
339
340
        dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                                all_start_positions, all_end_positions,
                                all_cls_index, all_p_mask)
thomwolf's avatar
thomwolf committed
341

342
343
    if output_examples:
        return dataset, examples, features
thomwolf's avatar
thomwolf committed
344
345
    return dataset

346
347
348
349
350

def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
thomwolf's avatar
thomwolf committed
351
352
353
354
    parser.add_argument("--train_file", default=None, type=str, required=True,
                        help="SQuAD json for training. E.g., train-v1.1.json")
    parser.add_argument("--predict_file", default=None, type=str, required=True,
                        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
355
356
357
358
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
359
360
361
362
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model checkpoints and predictions will be written.")

    ## Other parameters
363
364
365
366
367
368
369
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")

thomwolf's avatar
thomwolf committed
370
371
372
373
374
    parser.add_argument('--version_2_with_negative', action='store_true',
                        help='If true, the SQuAD examples contain some that do not have an answer.')
    parser.add_argument('--null_score_diff_threshold', type=float, default=0.0,
                        help="If null_score - best_non_null is greater than the threshold predict null.")

375
376
377
378
379
380
381
382
    parser.add_argument("--max_seq_length", default=384, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
                             "longer than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--doc_stride", default=128, type=int,
                        help="When splitting up a long document into chunks, how much stride to take between chunks.")
    parser.add_argument("--max_query_length", default=64, type=int,
                        help="The maximum number of tokens for the question. Questions longer than this will "
                             "be truncated to this length.")
thomwolf's avatar
thomwolf committed
383
384
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
385
    parser.add_argument("--do_eval", action='store_true',
thomwolf's avatar
thomwolf committed
386
                        help="Whether to run eval on the dev set.")
387
388
    parser.add_argument("--evaluate_during_training", action='store_true',
                        help="Rul evaluation during training at each logging step.")
thomwolf's avatar
thomwolf committed
389
    parser.add_argument("--do_lower_case", action='store_true',
390
                        help="Set this flag if you are using an uncased model.")
thomwolf's avatar
thomwolf committed
391

392
393
394
395
    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for evaluation.")
thomwolf's avatar
thomwolf committed
396
397
398
399
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
400
401
402
403
404
405
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
406
407
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
408
409
410
411
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")
412
    parser.add_argument("--n_best_size", default=20, type=int,
thomwolf's avatar
thomwolf committed
413
                        help="The total number of n-best predictions to generate in the nbest_predictions.json output file.")
414
415
416
417
418
419
    parser.add_argument("--max_answer_length", default=30, type=int,
                        help="The maximum length of an answer that can be generated. This is needed because the start "
                             "and end predictions are not conditioned on one another.")
    parser.add_argument("--verbose_logging", action='store_true',
                        help="If true, all of the warnings related to data processing will be printed. "
                             "A number of warnings are expected for a normal SQuAD evaluation.")
thomwolf's avatar
thomwolf committed
420

421
422
423
424
425
426
    parser.add_argument('--logging_steps', type=int, default=50,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
thomwolf's avatar
thomwolf committed
427
    parser.add_argument("--no_cuda", action='store_true',
428
                        help="Whether not to use CUDA when available")
429
430
431
432
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
thomwolf's avatar
thomwolf committed
433
    parser.add_argument('--seed', type=int, default=42,
434
                        help="random seed for initialization")
435

thomwolf's avatar
thomwolf committed
436
    parser.add_argument("--local_rank", type=int, default=-1,
437
                        help="local_rank for distributed training on gpus")
thomwolf's avatar
thomwolf committed
438
439
440
441
442
    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
443
444
445
446
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
447
448
449
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

450
    # Setup distant debugging if needed
451
452
453
454
455
456
457
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

thomwolf's avatar
thomwolf committed
458
    # Setup CUDA, GPU & distributed training
459
460
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
461
462
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
463
464
465
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
466
467
        args.n_gpu = 1
    args.device = device
468

thomwolf's avatar
thomwolf committed
469
    # Setup logging
470
471
472
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
thomwolf's avatar
thomwolf committed
473
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
474
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
475

476
477
    # Set seed
    set_seed(args)
478

thomwolf's avatar
thomwolf committed
479
    # Load pretrained model and tokenizer
480
    if args.local_rank not in [-1, 0]:
481
482
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

483
    args.model_type = args.model_type.lower()
484
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
thomwolf's avatar
thomwolf committed
485
486
487
488
489
490
491
492
493
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          cache_dir=args.cache_dir if args.cache_dir else None)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
                                                do_lower_case=args.do_lower_case,
                                                cache_dir=args.cache_dir if args.cache_dir else None)
    model = model_class.from_pretrained(args.model_name_or_path,
                                        from_tf=bool('.ckpt' in args.model_name_or_path),
                                        config=config,
                                        cache_dir=args.cache_dir if args.cache_dir else None)
494
495

    if args.local_rank == 0:
496
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
497

thomwolf's avatar
thomwolf committed
498
    model.to(args.device)
499

500
501
    logger.info("Training/evaluation parameters %s", args)

Simon Layton's avatar
Simon Layton committed
502
503
504
505
506
507
508
509
510
511
    # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
    # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will
    # remove the need for this code, but it is still valid.
    if args.fp16:
        try:
            import apex
            apex.amp.register_half_function(torch, 'einsum')
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")

thomwolf's avatar
thomwolf committed
512
    # Training
513
    if args.do_train:
514
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
515
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
516
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
517

518

thomwolf's avatar
thomwolf committed
519
    # Save the trained model and the tokenizer
Peng Qi's avatar
Peng Qi committed
520
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
521
522
523
524
525
526
527
528
529
530
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)
531
532

        # Good practice: save your training arguments together with the trained model
533
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
534

535
536
        # Load a trained model and vocabulary that you have fine-tuned
        model = model_class.from_pretrained(args.output_dir)
Peng Qi's avatar
Peng Qi committed
537
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
538
539
540
        model.to(args.device)


thomwolf's avatar
thomwolf committed
541
    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
542
543
544
545
546
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
547
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce model loading logs
thomwolf's avatar
thomwolf committed
548

549
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
thomwolf's avatar
thomwolf committed
550

551
        for checkpoint in checkpoints:
thomwolf's avatar
thomwolf committed
552
            # Reload the model
553
554
555
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
thomwolf's avatar
thomwolf committed
556
557

            # Evaluate
558
            result = evaluate(args, model, tokenizer, prefix=global_step)
thomwolf's avatar
thomwolf committed
559

560
561
            result = dict((k + ('_{}'.format(global_step) if global_step else ''), v) for k, v in result.items())
            results.update(result)
thomwolf's avatar
thomwolf committed
562

563
    logger.info("Results: {}".format(results))
thomwolf's avatar
thomwolf committed
564

565
    return results
566
567
568
569


if __name__ == "__main__":
    main()