modeling_gptj.py 49.1 KB
Newer Older
Stella Biderman's avatar
Stella Biderman committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15
""" PyTorch GPT-J model."""
Stella Biderman's avatar
Stella Biderman committed
16

17
import warnings
18
from typing import Optional, Tuple, Union
Stella Biderman's avatar
Stella Biderman committed
19
20

import torch
21
import torch.fx
Stella Biderman's avatar
Stella Biderman committed
22
23
import torch.utils.checkpoint
from torch import nn
24
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
Stella Biderman's avatar
Stella Biderman committed
25
26

from ...activations import ACT2FN
27
28
29
30
31
32
from ...modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutputWithPast,
)
Stella Biderman's avatar
Stella Biderman committed
33
from ...modeling_utils import PreTrainedModel
34
35
36
37
38
39
40
from ...utils import (
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_torch_fx_proxy,
    logging,
)
Stella Biderman's avatar
Stella Biderman committed
41
42
43
44
45
46
from ...utils.model_parallel_utils import assert_device_map, get_device_map
from .configuration_gptj import GPTJConfig


logger = logging.get_logger(__name__)

47
_CHECKPOINT_FOR_DOC = "hf-internal-testing/tiny-random-gptj"
48
_REAL_CHECKPOINT_FOR_DOC = "EleutherAI/gpt-j-6B"
Stella Biderman's avatar
Stella Biderman committed
49
_CONFIG_FOR_DOC = "GPTJConfig"
50
51


Stella Biderman's avatar
Stella Biderman committed
52
53
54
55
56
57
GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "EleutherAI/gpt-j-6B",
    # See all GPT-J models at https://huggingface.co/models?filter=gptj
]


58
def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor:
Stella Biderman's avatar
Stella Biderman committed
59
    inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim))
60
    sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=torch.float), inv_freq).float()
61
    return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1)
62
63
64
65
66


@torch.fx.wrap
def get_embed_positions(embed_positions, position_ids):
    return embed_positions.to(position_ids.device).repeat(position_ids.shape[0], 1, 1)
Stella Biderman's avatar
Stella Biderman committed
67
68


69
def rotate_every_two(x: torch.Tensor) -> torch.Tensor:
Stella Biderman's avatar
Stella Biderman committed
70
71
    x1 = x[:, :, :, ::2]
    x2 = x[:, :, :, 1::2]
72
    x = torch.stack((-x2, x1), dim=-1)
Stella Biderman's avatar
Stella Biderman committed
73
74
75
    return x.flatten(-2)  # in einsum notation: rearrange(x, '... d j -> ... (d j)')


76
77
78
79
def apply_rotary_pos_emb(tensor: torch.Tensor, sin: torch.Tensor, cos: torch.Tensor) -> torch.Tensor:
    sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3)
    cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3)
    return (tensor * cos) + (rotate_every_two(tensor) * sin)
Stella Biderman's avatar
Stella Biderman committed
80
81
82
83
84
85
86
87
88


class GPTJAttention(nn.Module):
    def __init__(self, config):
        super().__init__()

        max_positions = config.max_position_embeddings
        self.register_buffer(
            "bias",
89
            torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
Stella Biderman's avatar
Stella Biderman committed
90
91
                1, 1, max_positions, max_positions
            ),
92
            persistent=False,
Stella Biderman's avatar
Stella Biderman committed
93
        )
94
        self.register_buffer("masked_bias", torch.tensor(-1e9), persistent=False)
Stella Biderman's avatar
Stella Biderman committed
95
96
97
98
99
100
101
102
103

        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)

        self.embed_dim = config.hidden_size
        self.num_attention_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_attention_heads
        if self.head_dim * self.num_attention_heads != self.embed_dim:
            raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
104
105
                f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and"
                f" `num_attention_heads`: {self.num_attention_heads})."
Stella Biderman's avatar
Stella Biderman committed
106
107
108
109
110
111
112
            )
        self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype())

        self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
        self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
        self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
        self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
113
114
115
        self.rotary_dim = config.rotary_dim
        pos_embd_dim = self.rotary_dim or self.embed_dim
        self.embed_positions = create_sinusoidal_positions(max_positions, pos_embd_dim)
Stella Biderman's avatar
Stella Biderman committed
116
117
118

    def _split_heads(self, tensor, num_attention_heads, attn_head_size, rotary):
        """
119
        Splits hidden dim into attn_head_size and num_attention_heads
Stella Biderman's avatar
Stella Biderman committed
120
121
        """
        new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
122
        tensor = tensor.view(new_shape)
Stella Biderman's avatar
Stella Biderman committed
123
124
125
126
127
128
129
130
131
132
133
        if rotary:
            return tensor
        if len(tensor.shape) == 5:
            return tensor.permute(0, 1, 3, 2, 4)  # (batch, blocks, head, block_length, head_features)
        elif len(tensor.shape) == 4:
            return tensor.permute(0, 2, 1, 3)  # (batch, head, seq_length, head_features)
        else:
            raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")

    def _merge_heads(self, tensor, num_attention_heads, attn_head_size):
        """
134
        Merges attn_head_size dim and num_attn_heads dim into hidden dim
Stella Biderman's avatar
Stella Biderman committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
        """
        if len(tensor.shape) == 5:
            tensor = tensor.permute(0, 1, 3, 2, 4).contiguous()
        elif len(tensor.shape) == 4:
            tensor = tensor.permute(0, 2, 1, 3).contiguous()
        else:
            raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")
        new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,)
        return tensor.view(new_shape)

    def _attn(
        self,
        query,
        key,
        value,
        attention_mask=None,
        head_mask=None,
    ):
        # compute causal mask from causal mask buffer
        query_length, key_length = query.size(-2), key.size(-2)
155
        causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
Stella Biderman's avatar
Stella Biderman committed
156
157
158
159
160
161

        # Keep the attention weights computation in fp32 to avoid overflow issues
        query = query.to(torch.float32)
        key = key.to(torch.float32)

        attn_weights = torch.matmul(query, key.transpose(-1, -2))
Yih-Dar's avatar
Yih-Dar committed
162
163
164
165
166
167

        mask_value = torch.finfo(attn_weights.dtype).min
        # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
        # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
        mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
        attn_weights = torch.where(causal_mask, attn_weights, mask_value)
Stella Biderman's avatar
Stella Biderman committed
168
169
170
171
172
173
174

        attn_weights = attn_weights / self.scale_attn

        if attention_mask is not None:
            # Apply the attention mask
            attn_weights = attn_weights + attention_mask

175
        attn_weights = nn.functional.softmax(attn_weights, dim=-1)
Stella Biderman's avatar
Stella Biderman committed
176
177
178
179
180
181
182
183
184
185
186
        attn_weights = attn_weights.to(value.dtype)
        attn_weights = self.attn_dropout(attn_weights)

        # Mask heads if we want to
        if head_mask is not None:
            attn_weights = attn_weights * head_mask

        attn_output = torch.matmul(attn_weights, value)

        return attn_output, attn_weights

187
188
189
190
191
192
193
    def _get_embed_positions(self, position_ids):
        embed_positions = self.embed_positions
        if embed_positions.device != position_ids.device:
            embed_positions = embed_positions.to(position_ids.device)
            self.embed_positions = embed_positions
        return embed_positions.repeat(position_ids.shape[0], 1, 1)

Stella Biderman's avatar
Stella Biderman committed
194
195
    def forward(
        self,
196
        hidden_states: torch.FloatTensor,
197
        layer_past: Optional[Tuple[torch.Tensor]] = None,
198
199
        attention_mask: Optional[torch.FloatTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
200
201
202
203
204
205
206
        head_mask: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
    ) -> Union[
        Tuple[torch.Tensor, Tuple[torch.Tensor]],
        Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]],
    ]:
Stella Biderman's avatar
Stella Biderman committed
207
208
209
210
211
212
213
214
        query = self.q_proj(hidden_states)
        key = self.k_proj(hidden_states)
        value = self.v_proj(hidden_states)

        query = self._split_heads(query, self.num_attention_heads, self.head_dim, True)
        key = self._split_heads(key, self.num_attention_heads, self.head_dim, True)
        value = self._split_heads(value, self.num_attention_heads, self.head_dim, False)

215
        if is_torch_fx_proxy(position_ids) or torch.jit.is_tracing():
216
217
218
219
220
            # The logic to conditionally copy to GPU could not be traced, so we do this
            # every time in the torch.fx case
            embed_positions = get_embed_positions(self.embed_positions, position_ids)
        else:
            embed_positions = self._get_embed_positions(position_ids)
Stella Biderman's avatar
Stella Biderman committed
221

222
223
224
        repeated_position_ids = position_ids.unsqueeze(-1).repeat(1, 1, embed_positions.shape[-1])
        sincos = torch.gather(embed_positions, 1, repeated_position_ids)
        sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1)
Stella Biderman's avatar
Stella Biderman committed
225
226
227
228
229
230
231
232

        if self.rotary_dim is not None:
            k_rot = key[:, :, :, : self.rotary_dim]
            k_pass = key[:, :, :, self.rotary_dim :]

            q_rot = query[:, :, :, : self.rotary_dim]
            q_pass = query[:, :, :, self.rotary_dim :]

233
234
            k_rot = apply_rotary_pos_emb(k_rot, sin, cos)
            q_rot = apply_rotary_pos_emb(q_rot, sin, cos)
Stella Biderman's avatar
Stella Biderman committed
235
236
237
238

            key = torch.cat([k_rot, k_pass], dim=-1)
            query = torch.cat([q_rot, q_pass], dim=-1)
        else:
239
240
            key = apply_rotary_pos_emb(key, sin, cos)
            query = apply_rotary_pos_emb(query, sin, cos)
Stella Biderman's avatar
Stella Biderman committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

        key = key.permute(0, 2, 1, 3)
        query = query.permute(0, 2, 1, 3)

        if layer_past is not None:
            past_key = layer_past[0]
            past_value = layer_past[1]
            key = torch.cat((past_key, key), dim=-2)
            value = torch.cat((past_value, value), dim=-2)

        if use_cache is True:
            present = (key, value)
        else:
            present = None

        # compute self-attention: V x Softmax(QK^T)
        attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)

        attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim)
        attn_output = self.out_proj(attn_output)
        attn_output = self.resid_dropout(attn_output)

        outputs = (attn_output, present)
        if output_attentions:
            outputs += (attn_weights,)

        return outputs  # a, present, (attentions)


class GPTJMLP(nn.Module):
    def __init__(self, intermediate_size, config):  # in MLP: intermediate_size= 4 * embed_dim
        super().__init__()
        embed_dim = config.n_embd

        self.fc_in = nn.Linear(embed_dim, intermediate_size)
        self.fc_out = nn.Linear(intermediate_size, embed_dim)

        self.act = ACT2FN[config.activation_function]
        self.dropout = nn.Dropout(config.resid_pdrop)

281
    def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor:
Stella Biderman's avatar
Stella Biderman committed
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
        hidden_states = self.fc_in(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.fc_out(hidden_states)
        hidden_states = self.dropout(hidden_states)
        return hidden_states


class GPTJBlock(nn.Module):
    def __init__(self, config):
        super().__init__()
        inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
        self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
        self.attn = GPTJAttention(config)
        self.mlp = GPTJMLP(inner_dim, config)

    def forward(
        self,
299
300
301
        hidden_states: Optional[torch.FloatTensor],
        layer_past: Optional[Tuple[torch.Tensor]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
302
        position_ids: Optional[torch.LongTensor] = None,
303
304
305
306
        head_mask: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
    ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
Stella Biderman's avatar
Stella Biderman committed
307
308
309
        residual = hidden_states
        hidden_states = self.ln_1(hidden_states)
        attn_outputs = self.attn(
310
            hidden_states=hidden_states,
Stella Biderman's avatar
Stella Biderman committed
311
312
            layer_past=layer_past,
            attention_mask=attention_mask,
313
            position_ids=position_ids,
Stella Biderman's avatar
Stella Biderman committed
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
            head_mask=head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
        )
        attn_output = attn_outputs[0]  # output_attn: a, present, (attentions)
        outputs = attn_outputs[1:]

        feed_forward_hidden_states = self.mlp(hidden_states)
        hidden_states = attn_output + feed_forward_hidden_states + residual

        if use_cache:
            outputs = (hidden_states,) + outputs
        else:
            outputs = (hidden_states,) + outputs[1:]

        return outputs  # hidden_states, present, (attentions)


class GPTJPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = GPTJConfig
    base_model_prefix = "transformer"
    is_parallelizable = True
341
    supports_gradient_checkpointing = True
342
    _no_split_modules = ["GPTJBlock"]
343
    _skip_keys_device_placement = "past_key_values"
Stella Biderman's avatar
Stella Biderman committed
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

    def __init__(self, *inputs, **kwargs):
        super().__init__(*inputs, **kwargs)

    def _init_weights(self, module):
        """Initialize the weights."""
        if isinstance(module, (nn.Linear,)):
            # Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

364
365
366
367
    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, GPTJModel):
            module.gradient_checkpointing = value

Stella Biderman's avatar
Stella Biderman committed
368
369

GPTJ_START_DOCSTRING = r"""
370
    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
Stella Biderman's avatar
Stella Biderman committed
371
372
373
374
    it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
375
        config ([`GPTJConfig`]): Model configuration class with all the parameters of the model.
Stella Biderman's avatar
Stella Biderman committed
376
            Initializing with a config file does not load the weights associated with the model, only the
Sylvain Gugger's avatar
Sylvain Gugger committed
377
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
Stella Biderman's avatar
Stella Biderman committed
378
379
380
381
"""

GPTJ_INPUTS_DOCSTRING = r"""
    Args:
382
        input_ids (`torch.LongTensor` of shape `({0})`):
Stella Biderman's avatar
Stella Biderman committed
383
384
            Indices of input sequence tokens in the vocabulary.

Sylvain Gugger's avatar
Sylvain Gugger committed
385
            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
Sylvain Gugger's avatar
Sylvain Gugger committed
386
            [`PreTrainedTokenizer.__call__`] for details.
Stella Biderman's avatar
Stella Biderman committed
387

388
389
390
            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
Stella Biderman's avatar
Stella Biderman committed
391
392
393
394

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

395
396
            [What are attention masks?](../glossary#attention-mask)
        token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
397
398
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
            1]`:
Stella Biderman's avatar
Stella Biderman committed
399

400
401
            - 0 corresponds to a *sentence A* token,
            - 1 corresponds to a *sentence B* token.
Stella Biderman's avatar
Stella Biderman committed
402

403
            [What are token type IDs?](../glossary#token-type-ids)
404
405
406
407
408
        position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.n_positions - 1]`.

            [What are position IDs?](../glossary#position-ids)
409
410
        head_mask (`torch.FloatTensor` of shape `(num_attention_heads,)` or `(n_layer, num_attention_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
Stella Biderman's avatar
Stella Biderman committed
411
412
413
414

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

415
        inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_dim)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
416
417
418
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
            model's internal embedding lookup matrix.
419
420
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
Stella Biderman's avatar
Stella Biderman committed
421
            tensors for more detail.
422
423
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
Stella Biderman's avatar
Stella Biderman committed
424
            more detail.
425
        return_dict (`bool`, *optional*):
426
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Stella Biderman's avatar
Stella Biderman committed
427
428
429
430
431
432
433
434
"""

PARALLELIZE_DOCSTRING = r"""
    This is an experimental feature and is a subject to change at a moment's notice. Uses a device map to distribute
    attention modules of the model across several devices. If no device map is given, it will evenly distribute blocks
    across all devices.

    Args:
435
        device_map (`Dict[int, list]`, optional, defaults to None):
Stella Biderman's avatar
Stella Biderman committed
436
437
438
439
440
441
442
            A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
            automatically mapped to the first device (for esoteric reasons). That means that the first device should
            have fewer attention modules mapped to it than other devices. For reference, the GPT-J models have the
            following number of attention modules:

                - gpt-j-6B: 28

443
444
445
446
    Example:

    ```python
    # Here is an example of a device map on a machine with 4 GPUs using gpt-j-6B, which has a total of 28 attention modules:
Sylvain Gugger's avatar
Sylvain Gugger committed
447
448
449
450
451
452
453
    model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
    device_map = {
        0: [0, 1, 2, 3, 4, 5, 6],
        1: [7, 8, 9, 10, 11, 12, 13],
        2: [14, 15, 16, 17, 18, 19, 20],
        3: [21, 22, 23, 24, 25, 26, 27],
    }
454
455
    model.parallelize(device_map)
    ```
Stella Biderman's avatar
Stella Biderman committed
456
457
458
459
460
"""

DEPARALLELIZE_DOCSTRING = r"""
    Moves the model to CPU from a model parallel state.

461
462
463
464
    Example:

    ```python
    # On a 4 GPU machine with gpt-j-6B:
Sylvain Gugger's avatar
Sylvain Gugger committed
465
466
467
468
469
470
471
472
473
    model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
    device_map = {
        0: [0, 1, 2, 3, 4, 5, 6],
        1: [7, 8, 9, 10, 11, 12, 13],
        2: [14, 15, 16, 17, 18, 19, 20],
        3: [21, 22, 23, 24, 25, 26, 27],
    }
    model.parallelize(device_map)  # Splits the model across several devices
    model.deparallelize()  # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
474
    ```
Stella Biderman's avatar
Stella Biderman committed
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
"""


@add_start_docstrings(
    "The bare GPT-J Model transformer outputting raw hidden-states without any specific head on top.",
    GPTJ_START_DOCSTRING,
)
class GPTJModel(GPTJPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.embed_dim = config.n_embd
        self.vocab_size = config.vocab_size
        self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
        self.drop = nn.Dropout(config.embd_pdrop)
        self.h = nn.ModuleList([GPTJBlock(config) for _ in range(config.n_layer)])
        self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)

        # Model parallel
        self.model_parallel = False
        self.device_map = None
496
        self.gradient_checkpointing = False
Stella Biderman's avatar
Stella Biderman committed
497

498
499
500
        # Initialize weights and apply final processing
        self.post_init()

Stella Biderman's avatar
Stella Biderman committed
501
502
    @add_start_docstrings(PARALLELIZE_DOCSTRING)
    def parallelize(self, device_map=None):
503
504
505
506
507
508
509
        warnings.warn(
            "`GPTJModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your"
            " model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
            " `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1,"
            " ...}",
            FutureWarning,
        )
Stella Biderman's avatar
Stella Biderman committed
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
        # Check validity of device_map
        self.device_map = (
            get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
        )
        assert_device_map(self.device_map, len(self.h))
        self.model_parallel = True
        self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
        self.last_device = "cuda:" + str(max(self.device_map.keys()))
        self.wte = self.wte.to(self.first_device)
        # Load onto devices
        for k, v in self.device_map.items():
            for block in v:
                cuda_device = "cuda:" + str(k)
                self.h[block] = self.h[block].to(cuda_device)
        # ln_f to last
        self.ln_f = self.ln_f.to(self.last_device)

    @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
    def deparallelize(self):
529
530
531
532
        warnings.warn(
            "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
            FutureWarning,
        )
Stella Biderman's avatar
Stella Biderman committed
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
        self.model_parallel = False
        self.device_map = None
        self.first_device = "cpu"
        self.last_device = "cpu"
        self.wte = self.wte.to("cpu")
        for index in range(len(self.h)):
            self.h[index] = self.h[index].to("cpu")
        self.ln_f = self.ln_f.to("cpu")
        torch.cuda.empty_cache()

    def get_input_embeddings(self):
        return self.wte

    def set_input_embeddings(self, new_embeddings):
        self.wte = new_embeddings

    @add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=BaseModelOutputWithPast,
        config_class=_CONFIG_FOR_DOC,
554
        real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
Stella Biderman's avatar
Stella Biderman committed
555
556
557
    )
    def forward(
        self,
558
559
560
561
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
562
        position_ids: Optional[torch.LongTensor] = None,
563
564
565
566
567
568
569
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:
Stella Biderman's avatar
Stella Biderman committed
570
571
572
573
574
575
576
577
578
579
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
580
            self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
Stella Biderman's avatar
Stella Biderman committed
581
582
583
584
585
586
587
588
589
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
            batch_size = input_ids.shape[0]
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
            batch_size = inputs_embeds.shape[0]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

590
591
        device = input_ids.device if input_ids is not None else inputs_embeds.device

Stella Biderman's avatar
Stella Biderman committed
592
593
594
595
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, input_shape[-1])

        if past_key_values is None:
596
            past_length = 0
Stella Biderman's avatar
Stella Biderman committed
597
            past_key_values = tuple([None] * len(self.h))
598
599
600
601
602
        else:
            past_length = past_key_values[0][0].size(-2)

        if position_ids is None:
            position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
603
            position_ids = position_ids.unsqueeze(0)
Stella Biderman's avatar
Stella Biderman committed
604
605
606

        # Attention mask.
        if attention_mask is not None:
607
608
            if batch_size <= 0:
                raise ValueError("batch_size has to be defined and > 0")
Stella Biderman's avatar
Stella Biderman committed
609
610
611
612
613
614
615
616
617
618
            attention_mask = attention_mask.view(batch_size, -1)
            # We create a 3D attention mask from a 2D tensor mask.
            # Sizes are [batch_size, 1, 1, to_seq_length]
            # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
            # this attention mask is more simple than the triangular masking of causal attention
            # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
            attention_mask = attention_mask[:, None, None, :]

            # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
            # masked positions, this operation will create a tensor which is 0.0 for
619
            # positions we want to attend and the dtype's smallest value for masked positions.
Stella Biderman's avatar
Stella Biderman committed
620
621
622
            # Since we are adding it to the raw scores before the softmax, this is
            # effectively the same as removing these entirely.
            attention_mask = attention_mask.to(dtype=self.dtype)  # fp16 compatibility
Yih-Dar's avatar
Yih-Dar committed
623
            attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
Stella Biderman's avatar
Stella Biderman committed
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x num_attention_heads x N x N
        # head_mask has shape n_layer x batch x num_attention_heads x N x N
        head_mask = self.get_head_mask(head_mask, self.config.n_layer)

        if inputs_embeds is None:
            inputs_embeds = self.wte(input_ids)

        hidden_states = inputs_embeds

        if token_type_ids is not None:
            token_type_embeds = self.wte(token_type_ids)
            hidden_states = hidden_states + token_type_embeds

        hidden_states = self.drop(hidden_states)

642
        output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
Stella Biderman's avatar
Stella Biderman committed
643

644
645
646
647
648
649
650
        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

Stella Biderman's avatar
Stella Biderman committed
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
        presents = () if use_cache else None
        all_self_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None
        for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
            # Model parallel
            if self.model_parallel:
                torch.cuda.set_device(hidden_states.device)
                # Ensure layer_past is on same device as hidden_states (might not be correct)
                if layer_past is not None:
                    layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
                # Ensure that attention_mask is always on the same device as hidden_states
                if attention_mask is not None:
                    attention_mask = attention_mask.to(hidden_states.device)
                if isinstance(head_mask, torch.Tensor):
                    head_mask = head_mask.to(hidden_states.device)
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

669
            if self.gradient_checkpointing and self.training:
Stella Biderman's avatar
Stella Biderman committed
670
671
672
673
674
675
676
677

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, use_cache, output_attentions)

                    return custom_forward

678
                outputs = torch.utils.checkpoint.checkpoint(
Stella Biderman's avatar
Stella Biderman committed
679
680
681
682
                    create_custom_forward(block),
                    hidden_states,
                    None,
                    attention_mask,
683
                    position_ids,
Stella Biderman's avatar
Stella Biderman committed
684
685
686
687
                    head_mask[i],
                )
            else:
                outputs = block(
688
                    hidden_states=hidden_states,
Stella Biderman's avatar
Stella Biderman committed
689
690
                    layer_past=layer_past,
                    attention_mask=attention_mask,
691
                    position_ids=position_ids,
Stella Biderman's avatar
Stella Biderman committed
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
                    head_mask=head_mask[i],
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                )

            hidden_states = outputs[0]
            if use_cache is True:
                presents = presents + (outputs[1],)

            if output_attentions:
                all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)

            # Model Parallel: If it's the last layer for that device, put things on the next device
            if self.model_parallel:
                for k, v in self.device_map.items():
                    if i == v[-1] and "cuda:" + str(k) != self.last_device:
                        hidden_states = hidden_states.to("cuda:" + str(k + 1))

        hidden_states = self.ln_f(hidden_states)

712
        hidden_states = hidden_states.view(output_shape)
Stella Biderman's avatar
Stella Biderman committed
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
        # Add last hidden state
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )


@add_start_docstrings(
    """
Suraj Patil's avatar
Suraj Patil committed
730
    The GPT-J Model transformer with a language modeling head on top.
Stella Biderman's avatar
Stella Biderman committed
731
732
733
734
    """,
    GPTJ_START_DOCSTRING,
)
class GPTJForCausalLM(GPTJPreTrainedModel):
Sylvain Gugger's avatar
Sylvain Gugger committed
735
    _tied_weights_keys = ["lm_head.weight"]
Stella Biderman's avatar
Stella Biderman committed
736
737
738
739
740
741
742
743
744
745

    def __init__(self, config):
        super().__init__(config)
        self.transformer = GPTJModel(config)
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size)

        # Model parallel
        self.model_parallel = False
        self.device_map = None

746
747
748
        # Initialize weights and apply final processing
        self.post_init()

Stella Biderman's avatar
Stella Biderman committed
749
750
    @add_start_docstrings(PARALLELIZE_DOCSTRING)
    def parallelize(self, device_map=None):
751
752
753
754
755
756
757
        warnings.warn(
            "`GPTJForCausalLM.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
            " your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
            " `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':"
            " 0, 'transformer.h.1': 1, ...}",
            FutureWarning,
        )
Stella Biderman's avatar
Stella Biderman committed
758
759
760
761
762
763
764
765
766
767
768
769
        self.device_map = (
            get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
            if device_map is None
            else device_map
        )
        assert_device_map(self.device_map, len(self.transformer.h))
        self.transformer.parallelize(self.device_map)
        self.lm_head = self.lm_head.to(self.transformer.first_device)
        self.model_parallel = True

    @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
    def deparallelize(self):
770
771
772
773
        warnings.warn(
            "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
            FutureWarning,
        )
Stella Biderman's avatar
Stella Biderman committed
774
775
776
777
778
779
780
        self.transformer.deparallelize()
        self.transformer = self.transformer.to("cpu")
        self.lm_head = self.lm_head.to("cpu")
        self.model_parallel = False
        torch.cuda.empty_cache()

    def get_output_embeddings(self):
781
        return self.lm_head
Stella Biderman's avatar
Stella Biderman committed
782
783

    def set_output_embeddings(self, new_embeddings):
784
        self.lm_head = new_embeddings
Stella Biderman's avatar
Stella Biderman committed
785

786
    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
Stella Biderman's avatar
Stella Biderman committed
787
        token_type_ids = kwargs.get("token_type_ids", None)
788
        # Omit tokens covered by past_key_values
789
        if past_key_values:
790
791
792
793
794
795
796
797
798
799
            past_length = past_key_values[0][0].shape[2]

            # Some generation methods already pass only the last input ID
            if input_ids.shape[1] > past_length:
                remove_prefix_length = past_length
            else:
                # Default to old behavior: keep only final ID
                remove_prefix_length = input_ids.shape[1] - 1

            input_ids = input_ids[:, remove_prefix_length:]
Stella Biderman's avatar
Stella Biderman committed
800
            if token_type_ids is not None:
801
                token_type_ids = token_type_ids[:, -input_ids.shape[1] :]
Stella Biderman's avatar
Stella Biderman committed
802
803

        attention_mask = kwargs.get("attention_mask", None)
804
805
806
807
808
809
810
        position_ids = kwargs.get("position_ids", None)

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
811
                position_ids = position_ids[:, -input_ids.shape[1] :]
812
813
814
815
816
817
818
819
820
821

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "past_key_values": past_key_values,
822
823
                "use_cache": kwargs.get("use_cache"),
                "position_ids": position_ids,
824
825
826
827
828
829
                "attention_mask": attention_mask,
                "token_type_ids": token_type_ids,
            }
        )

        return model_inputs
Stella Biderman's avatar
Stella Biderman committed
830
831
832
833
834
835

    @add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=CausalLMOutputWithPast,
        config_class=_CONFIG_FOR_DOC,
836
        real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
Stella Biderman's avatar
Stella Biderman committed
837
838
839
    )
    def forward(
        self,
840
841
842
843
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
844
        position_ids: Optional[torch.LongTensor] = None,
845
846
847
848
849
850
851
852
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
Stella Biderman's avatar
Stella Biderman committed
853
        r"""
854
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Stella Biderman's avatar
Stella Biderman committed
855
            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
Sylvain Gugger's avatar
Sylvain Gugger committed
856
857
            `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
            are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
Stella Biderman's avatar
Stella Biderman committed
858
859
860
861
862
863
864
865
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
866
            position_ids=position_ids,
Stella Biderman's avatar
Stella Biderman committed
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]

        # Set device for model parallelism
        if self.model_parallel:
            torch.cuda.set_device(self.transformer.first_device)
            hidden_states = hidden_states.to(self.lm_head.weight.device)

        # make sure sampling in fp16 works correctly and
        # compute loss in fp32 to match with mesh-tf version
        # https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
        lm_logits = self.lm_head(hidden_states).to(torch.float32)

        loss = None
        if labels is not None:
888
889
            # move labels to correct device to enable model parallelism
            labels = labels.to(lm_logits.device)
Stella Biderman's avatar
Stella Biderman committed
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))

            loss = loss.to(hidden_states.dtype)

        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )

    @staticmethod
912
913
914
    def _reorder_cache(
        past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
    ) -> Tuple[Tuple[torch.Tensor]]:
Stella Biderman's avatar
Stella Biderman committed
915
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
916
917
918
        This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
        [`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
        beam_idx at every generation step.
Stella Biderman's avatar
Stella Biderman committed
919
920
921
        """
        return tuple(
            tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
922
            for layer_past in past_key_values
Stella Biderman's avatar
Stella Biderman committed
923
924
925
926
927
928
929
        )


@add_start_docstrings(
    """
    The GPT-J Model transformer with a sequence classification head on top (linear layer).

Sylvain Gugger's avatar
Sylvain Gugger committed
930
931
    [`GPTJForSequenceClassification`] uses the last token in order to do the classification, as other causal models
    (e.g. GPT, GPT-2, GPT-Neo) do.
Stella Biderman's avatar
Stella Biderman committed
932
933

    Since it does classification on the last token, it requires to know the position of the last token. If a
Sylvain Gugger's avatar
Sylvain Gugger committed
934
935
936
937
    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
    each row of the batch).
Stella Biderman's avatar
Stella Biderman committed
938
939
940
941
942
943
944
945
    """,
    GPTJ_START_DOCSTRING,
)
class GPTJForSequenceClassification(GPTJPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.transformer = GPTJModel(config)
946
        self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
Stella Biderman's avatar
Stella Biderman committed
947
948
949
950
951

        # Model parallel
        self.model_parallel = False
        self.device_map = None

952
953
954
        # Initialize weights and apply final processing
        self.post_init()

Stella Biderman's avatar
Stella Biderman committed
955
956
    @add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
Yih-Dar's avatar
Yih-Dar committed
957
        checkpoint="ydshieh/tiny-random-gptj-for-sequence-classification",
Stella Biderman's avatar
Stella Biderman committed
958
959
        output_type=SequenceClassifierOutputWithPast,
        config_class=_CONFIG_FOR_DOC,
960
        real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
Stella Biderman's avatar
Stella Biderman committed
961
962
963
    )
    def forward(
        self,
964
965
966
967
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
968
        position_ids: Optional[torch.LongTensor] = None,
969
970
971
972
973
974
975
976
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
Stella Biderman's avatar
Stella Biderman committed
977
        r"""
978
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
979
980
981
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Stella Biderman's avatar
Stella Biderman committed
982
983
984
985
986
987
988
989
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
990
            position_ids=position_ids,
Stella Biderman's avatar
Stella Biderman committed
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

1006
1007
        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
Stella Biderman's avatar
Stella Biderman committed
1008
1009
1010
1011
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
1012
1013
1014
                sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to(
                    logits.device
                )
Stella Biderman's avatar
Stella Biderman committed
1015
1016
1017
1018
            else:
                sequence_lengths = -1
                logger.warning(
                    f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
Sylvain Gugger's avatar
Sylvain Gugger committed
1019
                    "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
Stella Biderman's avatar
Stella Biderman committed
1020
1021
                )

1022
        pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
Stella Biderman's avatar
Stella Biderman committed
1023
1024
1025

        loss = None
        if labels is not None:
1026
            labels = labels.to(pooled_logits.device)
1027
1028
1029
1030
1031
1032
1033
1034
1035
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
Stella Biderman's avatar
Stella Biderman committed
1036
                loss_fct = MSELoss()
1037
1038
1039
1040
1041
                if self.num_labels == 1:
                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(pooled_logits, labels)
            elif self.config.problem_type == "single_label_classification":
Stella Biderman's avatar
Stella Biderman committed
1042
1043
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1044
1045
1046
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(pooled_logits, labels)
Stella Biderman's avatar
Stella Biderman committed
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
        if not return_dict:
            output = (pooled_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082


@add_start_docstrings(
    """
    The GPT-J Model transformer with a span classification head on top for extractive question-answering tasks like
    SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
    """,
    GPTJ_START_DOCSTRING,
)
class GPTJForQuestionAnswering(GPTJPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.transformer = GPTJModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        # Model parallel
        self.model_parallel = False
        self.device_map = None

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
1083
        checkpoint=_CHECKPOINT_FOR_DOC,
1084
1085
        output_type=QuestionAnsweringModelOutput,
        config_class=_CONFIG_FOR_DOC,
1086
        real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
1087
1088
1089
    )
    def forward(
        self,
1090
1091
1092
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
1093
        position_ids: Optional[torch.LongTensor] = None,
1094
1095
1096
1097
1098
1099
1100
1101
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        end_positions: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1102
        r"""
1103
        start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1104
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
Sylvain Gugger's avatar
Sylvain Gugger committed
1105
1106
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
1107
        end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1108
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
Sylvain Gugger's avatar
Sylvain Gugger committed
1109
1110
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
1111
1112
1113
1114
1115
1116
1117
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
1118
            position_ids=position_ids,
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1).contiguous()
        end_logits = end_logits.squeeze(-1).contiguous()

        total_loss = None
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
peter-sk's avatar
peter-sk committed
1137
                start_positions = start_positions.squeeze(-1).to(start_logits.device)
1138
            if len(end_positions.size()) > 1:
peter-sk's avatar
peter-sk committed
1139
                end_positions = end_positions.squeeze(-1).to(end_logits.device)
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions = start_positions.clamp(0, ignored_index)
            end_positions = end_positions.clamp(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

        if not return_dict:
            output = (start_logits, end_logits) + outputs[2:]
            return ((total_loss,) + output) if total_loss is not None else output

        return QuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )