modeling_gptj.py 48.8 KB
Newer Older
Stella Biderman's avatar
Stella Biderman committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15
""" PyTorch GPT-J model."""
Stella Biderman's avatar
Stella Biderman committed
16

17
import warnings
18
from typing import Optional, Tuple, Union
Stella Biderman's avatar
Stella Biderman committed
19
20
21
22

import torch
import torch.utils.checkpoint
from torch import nn
23
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
Stella Biderman's avatar
Stella Biderman committed
24
25

from ...activations import ACT2FN
26
27
28
29
30
31
from ...modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutputWithPast,
)
Stella Biderman's avatar
Stella Biderman committed
32
from ...modeling_utils import PreTrainedModel
33
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
Stella Biderman's avatar
Stella Biderman committed
34
35
36
37
38
39
from ...utils.model_parallel_utils import assert_device_map, get_device_map
from .configuration_gptj import GPTJConfig


logger = logging.get_logger(__name__)

40
_CHECKPOINT_FOR_DOC = "hf-internal-testing/tiny-random-gptj"
41
_REAL_CHECKPOINT_FOR_DOC = "EleutherAI/gpt-j-6B"
Stella Biderman's avatar
Stella Biderman committed
42
_CONFIG_FOR_DOC = "GPTJConfig"
43
44


Stella Biderman's avatar
Stella Biderman committed
45
46
47
48
49
50
51
52
53
54
55
GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "EleutherAI/gpt-j-6B",
    # See all GPT-J models at https://huggingface.co/models?filter=gptj
]


def fixed_pos_embedding(x, seq_dim=1, seq_len=None):
    dim = x.shape[-1]
    if seq_len is None:
        seq_len = x.shape[seq_dim]
    inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim))
56
57
58
    sinusoid_inp = (
        torch.einsum("i , j -> i j", torch.arange(seq_len, dtype=torch.float), inv_freq).to(x.device).float()
    )
Stella Biderman's avatar
Stella Biderman committed
59
60
61
62
63
64
    return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)


def rotate_every_two(x):
    x1 = x[:, :, :, ::2]
    x2 = x[:, :, :, 1::2]
65
    x = torch.stack((-x2, x1), dim=-1)
Stella Biderman's avatar
Stella Biderman committed
66
67
68
    return x.flatten(-2)  # in einsum notation: rearrange(x, '... d j -> ... (d j)')


69
70
71
72
73
74
75
76
77
78
79
def duplicate_interleave(m):
    """
    A simple version of `torch.repeat_interleave` for duplicating a matrix while interleaving the copy.
    """
    dim0 = m.shape[0]
    m = m.view(-1, 1)  # flatten the matrix
    m = m.repeat(1, 2)  # repeat all elements into the 2nd dimension
    m = m.view(dim0, -1)  # reshape into a matrix, interleaving the copy
    return m


Stella Biderman's avatar
Stella Biderman committed
80
def apply_rotary_pos_emb(x, sincos, offset=0):
81
    sin, cos = (duplicate_interleave(t)[None, offset : x.shape[1] + offset, None, :] for t in sincos)
Stella Biderman's avatar
Stella Biderman committed
82
83
84
85
86
87
88
89
90
91
92
    # einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2)
    return (x * cos) + (rotate_every_two(x) * sin)


class GPTJAttention(nn.Module):
    def __init__(self, config):
        super().__init__()

        max_positions = config.max_position_embeddings
        self.register_buffer(
            "bias",
93
            torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
Stella Biderman's avatar
Stella Biderman committed
94
95
96
97
98
99
100
101
102
103
104
105
106
                1, 1, max_positions, max_positions
            ),
        )
        self.register_buffer("masked_bias", torch.tensor(-1e9))

        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)

        self.embed_dim = config.hidden_size
        self.num_attention_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_attention_heads
        if self.head_dim * self.num_attention_heads != self.embed_dim:
            raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
107
108
                f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and"
                f" `num_attention_heads`: {self.num_attention_heads})."
Stella Biderman's avatar
Stella Biderman committed
109
110
111
112
113
114
115
116
117
118
119
120
121
            )
        self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype())

        self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
        self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
        self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
        self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
        self.rotary_dim = None
        if config.rotary_dim is not None:
            self.rotary_dim = config.rotary_dim

    def _split_heads(self, tensor, num_attention_heads, attn_head_size, rotary):
        """
122
        Splits hidden dim into attn_head_size and num_attention_heads
Stella Biderman's avatar
Stella Biderman committed
123
124
        """
        new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
125
        tensor = tensor.view(new_shape)
Stella Biderman's avatar
Stella Biderman committed
126
127
128
129
130
131
132
133
134
135
136
        if rotary:
            return tensor
        if len(tensor.shape) == 5:
            return tensor.permute(0, 1, 3, 2, 4)  # (batch, blocks, head, block_length, head_features)
        elif len(tensor.shape) == 4:
            return tensor.permute(0, 2, 1, 3)  # (batch, head, seq_length, head_features)
        else:
            raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")

    def _merge_heads(self, tensor, num_attention_heads, attn_head_size):
        """
137
        Merges attn_head_size dim and num_attn_heads dim into hidden dim
Stella Biderman's avatar
Stella Biderman committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        """
        if len(tensor.shape) == 5:
            tensor = tensor.permute(0, 1, 3, 2, 4).contiguous()
        elif len(tensor.shape) == 4:
            tensor = tensor.permute(0, 2, 1, 3).contiguous()
        else:
            raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")
        new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,)
        return tensor.view(new_shape)

    def _attn(
        self,
        query,
        key,
        value,
        attention_mask=None,
        head_mask=None,
    ):
        # compute causal mask from causal mask buffer
        query_length, key_length = query.size(-2), key.size(-2)
158
        causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
Stella Biderman's avatar
Stella Biderman committed
159
160
161
162
163
164

        # Keep the attention weights computation in fp32 to avoid overflow issues
        query = query.to(torch.float32)
        key = key.to(torch.float32)

        attn_weights = torch.matmul(query, key.transpose(-1, -2))
Yih-Dar's avatar
Yih-Dar committed
165
166
167
168
169
170

        mask_value = torch.finfo(attn_weights.dtype).min
        # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
        # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
        mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
        attn_weights = torch.where(causal_mask, attn_weights, mask_value)
Stella Biderman's avatar
Stella Biderman committed
171
172
173
174
175
176
177

        attn_weights = attn_weights / self.scale_attn

        if attention_mask is not None:
            # Apply the attention mask
            attn_weights = attn_weights + attention_mask

178
        attn_weights = nn.functional.softmax(attn_weights, dim=-1)
Stella Biderman's avatar
Stella Biderman committed
179
180
181
182
183
184
185
186
187
188
189
190
191
        attn_weights = attn_weights.to(value.dtype)
        attn_weights = self.attn_dropout(attn_weights)

        # Mask heads if we want to
        if head_mask is not None:
            attn_weights = attn_weights * head_mask

        attn_output = torch.matmul(attn_weights, value)

        return attn_output, attn_weights

    def forward(
        self,
192
193
194
195
196
197
198
199
200
201
        hidden_states: Optional[torch.FloatTensor],
        attention_mask: Optional[torch.FloatTensor] = None,
        layer_past: Optional[Tuple[torch.Tensor]] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
    ) -> Union[
        Tuple[torch.Tensor, Tuple[torch.Tensor]],
        Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]],
    ]:
Stella Biderman's avatar
Stella Biderman committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
        query = self.q_proj(hidden_states)
        key = self.k_proj(hidden_states)
        value = self.v_proj(hidden_states)

        query = self._split_heads(query, self.num_attention_heads, self.head_dim, True)
        key = self._split_heads(key, self.num_attention_heads, self.head_dim, True)
        value = self._split_heads(value, self.num_attention_heads, self.head_dim, False)

        seq_len = key.shape[1]
        offset = 0

        if layer_past is not None:
            offset = layer_past[0].shape[-2]
            seq_len += offset

        if self.rotary_dim is not None:
            k_rot = key[:, :, :, : self.rotary_dim]
            k_pass = key[:, :, :, self.rotary_dim :]

            q_rot = query[:, :, :, : self.rotary_dim]
            q_pass = query[:, :, :, self.rotary_dim :]

            sincos = fixed_pos_embedding(k_rot, 1, seq_len=seq_len)
            k_rot = apply_rotary_pos_emb(k_rot, sincos, offset=offset)
            q_rot = apply_rotary_pos_emb(q_rot, sincos, offset=offset)

            key = torch.cat([k_rot, k_pass], dim=-1)
            query = torch.cat([q_rot, q_pass], dim=-1)
        else:
            sincos = fixed_pos_embedding(key, 1, seq_len=seq_len)
            key = apply_rotary_pos_emb(key, sincos, offset=offset)
            query = apply_rotary_pos_emb(query, sincos, offset=offset)

        key = key.permute(0, 2, 1, 3)
        query = query.permute(0, 2, 1, 3)

        if layer_past is not None:
            past_key = layer_past[0]
            past_value = layer_past[1]
            key = torch.cat((past_key, key), dim=-2)
            value = torch.cat((past_value, value), dim=-2)

        if use_cache is True:
            present = (key, value)
        else:
            present = None

        # compute self-attention: V x Softmax(QK^T)
        attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)

        attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim)
        attn_output = self.out_proj(attn_output)
        attn_output = self.resid_dropout(attn_output)

        outputs = (attn_output, present)
        if output_attentions:
            outputs += (attn_weights,)

        return outputs  # a, present, (attentions)


class GPTJMLP(nn.Module):
    def __init__(self, intermediate_size, config):  # in MLP: intermediate_size= 4 * embed_dim
        super().__init__()
        embed_dim = config.n_embd

        self.fc_in = nn.Linear(embed_dim, intermediate_size)
        self.fc_out = nn.Linear(intermediate_size, embed_dim)

        self.act = ACT2FN[config.activation_function]
        self.dropout = nn.Dropout(config.resid_pdrop)

274
    def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor:
Stella Biderman's avatar
Stella Biderman committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
        hidden_states = self.fc_in(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.fc_out(hidden_states)
        hidden_states = self.dropout(hidden_states)
        return hidden_states


class GPTJBlock(nn.Module):
    def __init__(self, config):
        super().__init__()
        inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
        self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
        self.attn = GPTJAttention(config)
        self.mlp = GPTJMLP(inner_dim, config)

    def forward(
        self,
292
293
294
295
296
297
298
        hidden_states: Optional[torch.FloatTensor],
        layer_past: Optional[Tuple[torch.Tensor]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
    ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
Stella Biderman's avatar
Stella Biderman committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
        residual = hidden_states
        hidden_states = self.ln_1(hidden_states)
        attn_outputs = self.attn(
            hidden_states,
            layer_past=layer_past,
            attention_mask=attention_mask,
            head_mask=head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
        )
        attn_output = attn_outputs[0]  # output_attn: a, present, (attentions)
        outputs = attn_outputs[1:]

        feed_forward_hidden_states = self.mlp(hidden_states)
        hidden_states = attn_output + feed_forward_hidden_states + residual

        if use_cache:
            outputs = (hidden_states,) + outputs
        else:
            outputs = (hidden_states,) + outputs[1:]

        return outputs  # hidden_states, present, (attentions)


class GPTJPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = GPTJConfig
    base_model_prefix = "transformer"
    is_parallelizable = True
332
    supports_gradient_checkpointing = True
333
    _no_split_modules = ["GPTJBlock"]
Stella Biderman's avatar
Stella Biderman committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

    def __init__(self, *inputs, **kwargs):
        super().__init__(*inputs, **kwargs)

    def _init_weights(self, module):
        """Initialize the weights."""
        if isinstance(module, (nn.Linear,)):
            # Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

354
355
356
357
    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, GPTJModel):
            module.gradient_checkpointing = value

Stella Biderman's avatar
Stella Biderman committed
358
359

GPTJ_START_DOCSTRING = r"""
360
    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
Stella Biderman's avatar
Stella Biderman committed
361
362
363
364
    it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
365
        config ([`GPTJConfig`]): Model configuration class with all the parameters of the model.
Stella Biderman's avatar
Stella Biderman committed
366
            Initializing with a config file does not load the weights associated with the model, only the
Sylvain Gugger's avatar
Sylvain Gugger committed
367
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
Stella Biderman's avatar
Stella Biderman committed
368
369
370
371
"""

GPTJ_INPUTS_DOCSTRING = r"""
    Args:
372
        input_ids (`torch.LongTensor` of shape `({0})`):
Stella Biderman's avatar
Stella Biderman committed
373
374
            Indices of input sequence tokens in the vocabulary.

Sylvain Gugger's avatar
Sylvain Gugger committed
375
            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
Sylvain Gugger's avatar
Sylvain Gugger committed
376
            [`PreTrainedTokenizer.__call__`] for details.
Stella Biderman's avatar
Stella Biderman committed
377

378
379
380
            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
Stella Biderman's avatar
Stella Biderman committed
381
382
383
384

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

385
386
            [What are attention masks?](../glossary#attention-mask)
        token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
387
388
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
            1]`:
Stella Biderman's avatar
Stella Biderman committed
389

390
391
            - 0 corresponds to a *sentence A* token,
            - 1 corresponds to a *sentence B* token.
Stella Biderman's avatar
Stella Biderman committed
392

393
394
395
            [What are token type IDs?](../glossary#token-type-ids)
        head_mask (`torch.FloatTensor` of shape `(num_attention_heads,)` or `(n_layer, num_attention_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
Stella Biderman's avatar
Stella Biderman committed
396
397
398
399

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

400
        inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_dim)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
401
402
403
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
            model's internal embedding lookup matrix.
404
405
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
Stella Biderman's avatar
Stella Biderman committed
406
            tensors for more detail.
407
408
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
Stella Biderman's avatar
Stella Biderman committed
409
            more detail.
410
        return_dict (`bool`, *optional*):
411
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Stella Biderman's avatar
Stella Biderman committed
412
413
414
415
416
417
418
419
"""

PARALLELIZE_DOCSTRING = r"""
    This is an experimental feature and is a subject to change at a moment's notice. Uses a device map to distribute
    attention modules of the model across several devices. If no device map is given, it will evenly distribute blocks
    across all devices.

    Args:
420
        device_map (`Dict[int, list]`, optional, defaults to None):
Stella Biderman's avatar
Stella Biderman committed
421
422
423
424
425
426
427
            A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
            automatically mapped to the first device (for esoteric reasons). That means that the first device should
            have fewer attention modules mapped to it than other devices. For reference, the GPT-J models have the
            following number of attention modules:

                - gpt-j-6B: 28

428
429
430
431
    Example:

    ```python
    # Here is an example of a device map on a machine with 4 GPUs using gpt-j-6B, which has a total of 28 attention modules:
Sylvain Gugger's avatar
Sylvain Gugger committed
432
433
434
435
436
437
438
    model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
    device_map = {
        0: [0, 1, 2, 3, 4, 5, 6],
        1: [7, 8, 9, 10, 11, 12, 13],
        2: [14, 15, 16, 17, 18, 19, 20],
        3: [21, 22, 23, 24, 25, 26, 27],
    }
439
440
    model.parallelize(device_map)
    ```
Stella Biderman's avatar
Stella Biderman committed
441
442
443
444
445
"""

DEPARALLELIZE_DOCSTRING = r"""
    Moves the model to CPU from a model parallel state.

446
447
448
449
    Example:

    ```python
    # On a 4 GPU machine with gpt-j-6B:
Sylvain Gugger's avatar
Sylvain Gugger committed
450
451
452
453
454
455
456
457
458
    model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
    device_map = {
        0: [0, 1, 2, 3, 4, 5, 6],
        1: [7, 8, 9, 10, 11, 12, 13],
        2: [14, 15, 16, 17, 18, 19, 20],
        3: [21, 22, 23, 24, 25, 26, 27],
    }
    model.parallelize(device_map)  # Splits the model across several devices
    model.deparallelize()  # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
459
    ```
Stella Biderman's avatar
Stella Biderman committed
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
"""


@add_start_docstrings(
    "The bare GPT-J Model transformer outputting raw hidden-states without any specific head on top.",
    GPTJ_START_DOCSTRING,
)
class GPTJModel(GPTJPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.embed_dim = config.n_embd
        self.vocab_size = config.vocab_size
        self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
        self.drop = nn.Dropout(config.embd_pdrop)
        self.h = nn.ModuleList([GPTJBlock(config) for _ in range(config.n_layer)])
        self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)

        # Model parallel
        self.model_parallel = False
        self.device_map = None
481
        self.gradient_checkpointing = False
Stella Biderman's avatar
Stella Biderman committed
482

483
484
485
        # Initialize weights and apply final processing
        self.post_init()

Stella Biderman's avatar
Stella Biderman committed
486
487
    @add_start_docstrings(PARALLELIZE_DOCSTRING)
    def parallelize(self, device_map=None):
488
489
490
491
492
493
494
        warnings.warn(
            "`GPTJModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your"
            " model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
            " `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1,"
            " ...}",
            FutureWarning,
        )
Stella Biderman's avatar
Stella Biderman committed
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
        # Check validity of device_map
        self.device_map = (
            get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
        )
        assert_device_map(self.device_map, len(self.h))
        self.model_parallel = True
        self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
        self.last_device = "cuda:" + str(max(self.device_map.keys()))
        self.wte = self.wte.to(self.first_device)
        # Load onto devices
        for k, v in self.device_map.items():
            for block in v:
                cuda_device = "cuda:" + str(k)
                self.h[block] = self.h[block].to(cuda_device)
        # ln_f to last
        self.ln_f = self.ln_f.to(self.last_device)

    @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
    def deparallelize(self):
514
515
516
517
        warnings.warn(
            "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
            FutureWarning,
        )
Stella Biderman's avatar
Stella Biderman committed
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
        self.model_parallel = False
        self.device_map = None
        self.first_device = "cpu"
        self.last_device = "cpu"
        self.wte = self.wte.to("cpu")
        for index in range(len(self.h)):
            self.h[index] = self.h[index].to("cpu")
        self.ln_f = self.ln_f.to("cpu")
        torch.cuda.empty_cache()

    def get_input_embeddings(self):
        return self.wte

    def set_input_embeddings(self, new_embeddings):
        self.wte = new_embeddings

    @add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=BaseModelOutputWithPast,
        config_class=_CONFIG_FOR_DOC,
539
        real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
Stella Biderman's avatar
Stella Biderman committed
540
541
542
    )
    def forward(
        self,
543
544
545
546
547
548
549
550
551
552
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
553
        **deprecated_arguments,
554
    ) -> Union[Tuple, BaseModelOutputWithPast]:
555
556
557
558
559
560
561
562
563
564
        if deprecated_arguments.pop("position_ids", False) is not False:
            # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
            warnings.warn(
                "`position_ids` have no functionality in GPT-J and will be removed in v5.0.0. You can safely ignore"
                " passing `position_ids`.",
                FutureWarning,
            )
        if len(deprecated_arguments) > 0:
            raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")

Stella Biderman's avatar
Stella Biderman committed
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
            batch_size = input_ids.shape[0]
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
            batch_size = inputs_embeds.shape[0]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, input_shape[-1])

        if past_key_values is None:
            past_key_values = tuple([None] * len(self.h))

        # Attention mask.
        if attention_mask is not None:
592
593
            if batch_size <= 0:
                raise ValueError("batch_size has to be defined and > 0")
Stella Biderman's avatar
Stella Biderman committed
594
595
596
597
598
599
600
601
602
603
            attention_mask = attention_mask.view(batch_size, -1)
            # We create a 3D attention mask from a 2D tensor mask.
            # Sizes are [batch_size, 1, 1, to_seq_length]
            # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
            # this attention mask is more simple than the triangular masking of causal attention
            # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
            attention_mask = attention_mask[:, None, None, :]

            # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
            # masked positions, this operation will create a tensor which is 0.0 for
604
            # positions we want to attend and the dtype's smallest value for masked positions.
Stella Biderman's avatar
Stella Biderman committed
605
606
607
            # Since we are adding it to the raw scores before the softmax, this is
            # effectively the same as removing these entirely.
            attention_mask = attention_mask.to(dtype=self.dtype)  # fp16 compatibility
Yih-Dar's avatar
Yih-Dar committed
608
            attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
Stella Biderman's avatar
Stella Biderman committed
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x num_attention_heads x N x N
        # head_mask has shape n_layer x batch x num_attention_heads x N x N
        head_mask = self.get_head_mask(head_mask, self.config.n_layer)

        if inputs_embeds is None:
            inputs_embeds = self.wte(input_ids)

        hidden_states = inputs_embeds

        if token_type_ids is not None:
            token_type_embeds = self.wte(token_type_ids)
            hidden_states = hidden_states + token_type_embeds

        hidden_states = self.drop(hidden_states)

        output_shape = input_shape + (hidden_states.size(-1),)

629
630
631
632
633
634
635
        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

Stella Biderman's avatar
Stella Biderman committed
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
        presents = () if use_cache else None
        all_self_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None
        for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
            # Model parallel
            if self.model_parallel:
                torch.cuda.set_device(hidden_states.device)
                # Ensure layer_past is on same device as hidden_states (might not be correct)
                if layer_past is not None:
                    layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
                # Ensure that attention_mask is always on the same device as hidden_states
                if attention_mask is not None:
                    attention_mask = attention_mask.to(hidden_states.device)
                if isinstance(head_mask, torch.Tensor):
                    head_mask = head_mask.to(hidden_states.device)
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

654
            if self.gradient_checkpointing and self.training:
Stella Biderman's avatar
Stella Biderman committed
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, use_cache, output_attentions)

                    return custom_forward

                outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    None,
                    attention_mask,
                    head_mask[i],
                )
            else:
                outputs = block(
                    hidden_states,
                    layer_past=layer_past,
                    attention_mask=attention_mask,
                    head_mask=head_mask[i],
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                )

            hidden_states = outputs[0]
            if use_cache is True:
                presents = presents + (outputs[1],)

            if output_attentions:
                all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)

            # Model Parallel: If it's the last layer for that device, put things on the next device
            if self.model_parallel:
                for k, v in self.device_map.items():
                    if i == v[-1] and "cuda:" + str(k) != self.last_device:
                        hidden_states = hidden_states.to("cuda:" + str(k + 1))

        hidden_states = self.ln_f(hidden_states)

695
        hidden_states = hidden_states.view(output_shape)
Stella Biderman's avatar
Stella Biderman committed
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
        # Add last hidden state
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )


@add_start_docstrings(
    """
Suraj Patil's avatar
Suraj Patil committed
713
    The GPT-J Model transformer with a language modeling head on top.
Stella Biderman's avatar
Stella Biderman committed
714
715
716
717
    """,
    GPTJ_START_DOCSTRING,
)
class GPTJForCausalLM(GPTJPreTrainedModel):
718
    _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias"]
Stella Biderman's avatar
Stella Biderman committed
719
720
721
722
723
724
725
726
727
728

    def __init__(self, config):
        super().__init__(config)
        self.transformer = GPTJModel(config)
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size)

        # Model parallel
        self.model_parallel = False
        self.device_map = None

729
730
731
        # Initialize weights and apply final processing
        self.post_init()

Stella Biderman's avatar
Stella Biderman committed
732
733
    @add_start_docstrings(PARALLELIZE_DOCSTRING)
    def parallelize(self, device_map=None):
734
735
736
737
738
739
740
        warnings.warn(
            "`GPTJForCausalLM.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
            " your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
            " `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':"
            " 0, 'transformer.h.1': 1, ...}",
            FutureWarning,
        )
Stella Biderman's avatar
Stella Biderman committed
741
742
743
744
745
746
747
748
749
750
751
752
        self.device_map = (
            get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
            if device_map is None
            else device_map
        )
        assert_device_map(self.device_map, len(self.transformer.h))
        self.transformer.parallelize(self.device_map)
        self.lm_head = self.lm_head.to(self.transformer.first_device)
        self.model_parallel = True

    @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
    def deparallelize(self):
753
754
755
756
        warnings.warn(
            "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
            FutureWarning,
        )
Stella Biderman's avatar
Stella Biderman committed
757
758
759
760
761
762
763
        self.transformer.deparallelize()
        self.transformer = self.transformer.to("cpu")
        self.lm_head = self.lm_head.to("cpu")
        self.model_parallel = False
        torch.cuda.empty_cache()

    def get_output_embeddings(self):
764
        return self.lm_head
Stella Biderman's avatar
Stella Biderman committed
765
766

    def set_output_embeddings(self, new_embeddings):
767
        self.lm_head = new_embeddings
Stella Biderman's avatar
Stella Biderman committed
768

769
770
771
    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, inputs_embeds=None, use_cache=None, **kwargs
    ):
Stella Biderman's avatar
Stella Biderman committed
772
773
        token_type_ids = kwargs.get("token_type_ids", None)
        # only last token for inputs_ids if past is defined in kwargs
774
        if past_key_values:
Stella Biderman's avatar
Stella Biderman committed
775
776
777
778
779
            input_ids = input_ids[:, -1].unsqueeze(-1)
            if token_type_ids is not None:
                token_type_ids = token_type_ids[:, -1].unsqueeze(-1)

        attention_mask = kwargs.get("attention_mask", None)
780
781
782
783
784
785
786
787
788
789

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "past_key_values": past_key_values,
790
                "use_cache": use_cache,
791
792
793
794
795
796
                "attention_mask": attention_mask,
                "token_type_ids": token_type_ids,
            }
        )

        return model_inputs
Stella Biderman's avatar
Stella Biderman committed
797
798
799
800
801
802

    @add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=CausalLMOutputWithPast,
        config_class=_CONFIG_FOR_DOC,
803
        real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
Stella Biderman's avatar
Stella Biderman committed
804
805
806
    )
    def forward(
        self,
807
808
809
810
811
812
813
814
815
816
817
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
818
        **deprecated_arguments,
819
    ) -> Union[Tuple, CausalLMOutputWithPast]:
Stella Biderman's avatar
Stella Biderman committed
820
        r"""
821
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Stella Biderman's avatar
Stella Biderman committed
822
            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
Sylvain Gugger's avatar
Sylvain Gugger committed
823
824
            `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
            are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
Stella Biderman's avatar
Stella Biderman committed
825
        """
826
827
828
829
830
831
832
833
834
835
        if deprecated_arguments.pop("position_ids", False) is not False:
            # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
            warnings.warn(
                "`position_ids` have no functionality in GPT-J and will be removed in v5.0.0. You can safely ignore"
                " passing `position_ids`.",
                FutureWarning,
            )
        if len(deprecated_arguments) > 0:
            raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")

Stella Biderman's avatar
Stella Biderman committed
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]

        # Set device for model parallelism
        if self.model_parallel:
            torch.cuda.set_device(self.transformer.first_device)
            hidden_states = hidden_states.to(self.lm_head.weight.device)

        # make sure sampling in fp16 works correctly and
        # compute loss in fp32 to match with mesh-tf version
        # https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
        lm_logits = self.lm_head(hidden_states).to(torch.float32)

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))

            loss = loss.to(hidden_states.dtype)

        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )

    @staticmethod
886
887
888
    def _reorder_cache(
        past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
    ) -> Tuple[Tuple[torch.Tensor]]:
Stella Biderman's avatar
Stella Biderman committed
889
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
890
891
892
        This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
        [`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
        beam_idx at every generation step.
Stella Biderman's avatar
Stella Biderman committed
893
894
895
        """
        return tuple(
            tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
896
            for layer_past in past_key_values
Stella Biderman's avatar
Stella Biderman committed
897
898
899
900
901
902
903
        )


@add_start_docstrings(
    """
    The GPT-J Model transformer with a sequence classification head on top (linear layer).

Sylvain Gugger's avatar
Sylvain Gugger committed
904
905
    [`GPTJForSequenceClassification`] uses the last token in order to do the classification, as other causal models
    (e.g. GPT, GPT-2, GPT-Neo) do.
Stella Biderman's avatar
Stella Biderman committed
906
907

    Since it does classification on the last token, it requires to know the position of the last token. If a
Sylvain Gugger's avatar
Sylvain Gugger committed
908
909
910
911
    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
    each row of the batch).
Stella Biderman's avatar
Stella Biderman committed
912
913
914
915
    """,
    GPTJ_START_DOCSTRING,
)
class GPTJForSequenceClassification(GPTJPreTrainedModel):
916
    _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias", r"lm_head.weight"]
Stella Biderman's avatar
Stella Biderman committed
917
918
919
920
921

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.transformer = GPTJModel(config)
922
        self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
Stella Biderman's avatar
Stella Biderman committed
923
924
925
926
927

        # Model parallel
        self.model_parallel = False
        self.device_map = None

928
929
930
        # Initialize weights and apply final processing
        self.post_init()

Stella Biderman's avatar
Stella Biderman committed
931
932
    @add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
Yih-Dar's avatar
Yih-Dar committed
933
        checkpoint="ydshieh/tiny-random-gptj-for-sequence-classification",
Stella Biderman's avatar
Stella Biderman committed
934
935
        output_type=SequenceClassifierOutputWithPast,
        config_class=_CONFIG_FOR_DOC,
936
        real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
Stella Biderman's avatar
Stella Biderman committed
937
938
939
    )
    def forward(
        self,
940
941
942
943
944
945
946
947
948
949
950
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
951
        **deprecated_arguments,
952
    ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
Stella Biderman's avatar
Stella Biderman committed
953
        r"""
954
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
955
956
957
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Stella Biderman's avatar
Stella Biderman committed
958
        """
959
960
961
962
963
964
965
966
967
968
        if deprecated_arguments.pop("position_ids", False) is not False:
            # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
            warnings.warn(
                "`position_ids` have no functionality in GPT-J and will be removed in v5.0.0. You can safely ignore"
                " passing `position_ids`.",
                FutureWarning,
            )
        if len(deprecated_arguments) > 0:
            raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")

Stella Biderman's avatar
Stella Biderman committed
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

991
992
        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
Stella Biderman's avatar
Stella Biderman committed
993
994
995
996
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
Yih-Dar's avatar
Yih-Dar committed
997
                sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
Stella Biderman's avatar
Stella Biderman committed
998
999
1000
1001
            else:
                sequence_lengths = -1
                logger.warning(
                    f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
Sylvain Gugger's avatar
Sylvain Gugger committed
1002
                    "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
Stella Biderman's avatar
Stella Biderman committed
1003
1004
                )

1005
        pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
Stella Biderman's avatar
Stella Biderman committed
1006
1007
1008

        loss = None
        if labels is not None:
1009
1010
1011
1012
1013
1014
1015
1016
1017
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
Stella Biderman's avatar
Stella Biderman committed
1018
                loss_fct = MSELoss()
1019
1020
1021
1022
1023
                if self.num_labels == 1:
                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(pooled_logits, labels)
            elif self.config.problem_type == "single_label_classification":
Stella Biderman's avatar
Stella Biderman committed
1024
1025
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1026
1027
1028
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(pooled_logits, labels)
Stella Biderman's avatar
Stella Biderman committed
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
        if not return_dict:
            output = (pooled_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049


@add_start_docstrings(
    """
    The GPT-J Model transformer with a span classification head on top for extractive question-answering tasks like
    SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
    """,
    GPTJ_START_DOCSTRING,
)
class GPTJForQuestionAnswering(GPTJPreTrainedModel):
1050
    _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias", r"lm_head.weight"]
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.transformer = GPTJModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        # Model parallel
        self.model_parallel = False
        self.device_map = None

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
1067
        checkpoint=_CHECKPOINT_FOR_DOC,
1068
1069
        output_type=QuestionAnsweringModelOutput,
        config_class=_CONFIG_FOR_DOC,
1070
        real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
1071
1072
1073
    )
    def forward(
        self,
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        end_positions: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
1084
        **deprecated_arguments,
1085
    ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1086
        r"""
1087
        start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1088
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
Sylvain Gugger's avatar
Sylvain Gugger committed
1089
1090
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
1091
        end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1092
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
Sylvain Gugger's avatar
Sylvain Gugger committed
1093
1094
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
1095
        """
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
        if deprecated_arguments.pop("position_ids", False) is not False:
            # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
            warnings.warn(
                "`position_ids` have no functionality in GPT-J and will be removed in v5.0.0. You can safely ignore"
                " passing `position_ids`.",
                FutureWarning,
            )
        if len(deprecated_arguments) > 0:
            raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")

1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1).contiguous()
        end_logits = end_logits.squeeze(-1).contiguous()

        total_loss = None
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions = start_positions.clamp(0, ignored_index)
            end_positions = end_positions.clamp(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

        if not return_dict:
            output = (start_logits, end_logits) + outputs[2:]
            return ((total_loss,) + output) if total_loss is not None else output

        return QuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )