modeling_gptj.py 46.4 KB
Newer Older
Stella Biderman's avatar
Stella Biderman committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15
""" PyTorch GPT-J model."""
Stella Biderman's avatar
Stella Biderman committed
16

17
from typing import Optional, Tuple, Union
Stella Biderman's avatar
Stella Biderman committed
18
19
20
21

import torch
import torch.utils.checkpoint
from torch import nn
22
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
Stella Biderman's avatar
Stella Biderman committed
23
24

from ...activations import ACT2FN
25
26
27
28
29
30
from ...modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutputWithPast,
)
Stella Biderman's avatar
Stella Biderman committed
31
from ...modeling_utils import PreTrainedModel
32
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
Stella Biderman's avatar
Stella Biderman committed
33
34
35
36
37
38
from ...utils.model_parallel_utils import assert_device_map, get_device_map
from .configuration_gptj import GPTJConfig


logger = logging.get_logger(__name__)

39
_CHECKPOINT_FOR_DOC = "hf-internal-testing/tiny-random-gptj"
40
_REAL_CHECKPOINT_FOR_DOC = "EleutherAI/gpt-j-6B"
Stella Biderman's avatar
Stella Biderman committed
41
_CONFIG_FOR_DOC = "GPTJConfig"
42
43


Stella Biderman's avatar
Stella Biderman committed
44
45
46
47
48
49
50
51
52
53
54
GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "EleutherAI/gpt-j-6B",
    # See all GPT-J models at https://huggingface.co/models?filter=gptj
]


def fixed_pos_embedding(x, seq_dim=1, seq_len=None):
    dim = x.shape[-1]
    if seq_len is None:
        seq_len = x.shape[seq_dim]
    inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim))
55
56
57
    sinusoid_inp = (
        torch.einsum("i , j -> i j", torch.arange(seq_len, dtype=torch.float), inv_freq).to(x.device).float()
    )
Stella Biderman's avatar
Stella Biderman committed
58
59
60
61
62
63
    return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)


def rotate_every_two(x):
    x1 = x[:, :, :, ::2]
    x2 = x[:, :, :, 1::2]
64
    x = torch.stack((-x2, x1), dim=-1)
Stella Biderman's avatar
Stella Biderman committed
65
66
67
    return x.flatten(-2)  # in einsum notation: rearrange(x, '... d j -> ... (d j)')


68
69
70
71
72
73
74
75
76
77
78
def duplicate_interleave(m):
    """
    A simple version of `torch.repeat_interleave` for duplicating a matrix while interleaving the copy.
    """
    dim0 = m.shape[0]
    m = m.view(-1, 1)  # flatten the matrix
    m = m.repeat(1, 2)  # repeat all elements into the 2nd dimension
    m = m.view(dim0, -1)  # reshape into a matrix, interleaving the copy
    return m


Stella Biderman's avatar
Stella Biderman committed
79
def apply_rotary_pos_emb(x, sincos, offset=0):
80
    sin, cos = map(lambda t: duplicate_interleave(t)[None, offset : x.shape[1] + offset, None, :], sincos)
Stella Biderman's avatar
Stella Biderman committed
81
82
83
84
85
86
87
88
89
90
91
    # einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2)
    return (x * cos) + (rotate_every_two(x) * sin)


class GPTJAttention(nn.Module):
    def __init__(self, config):
        super().__init__()

        max_positions = config.max_position_embeddings
        self.register_buffer(
            "bias",
92
            torch.tril(torch.ones((max_positions, max_positions), dtype=torch.uint8)).view(
Stella Biderman's avatar
Stella Biderman committed
93
94
95
96
97
98
99
100
101
102
103
104
105
                1, 1, max_positions, max_positions
            ),
        )
        self.register_buffer("masked_bias", torch.tensor(-1e9))

        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)

        self.embed_dim = config.hidden_size
        self.num_attention_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_attention_heads
        if self.head_dim * self.num_attention_heads != self.embed_dim:
            raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
106
107
                f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and"
                f" `num_attention_heads`: {self.num_attention_heads})."
Stella Biderman's avatar
Stella Biderman committed
108
109
110
111
112
113
114
115
116
117
118
119
120
            )
        self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype())

        self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
        self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
        self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
        self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
        self.rotary_dim = None
        if config.rotary_dim is not None:
            self.rotary_dim = config.rotary_dim

    def _split_heads(self, tensor, num_attention_heads, attn_head_size, rotary):
        """
121
        Splits hidden dim into attn_head_size and num_attention_heads
Stella Biderman's avatar
Stella Biderman committed
122
123
        """
        new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
124
        tensor = tensor.view(new_shape)
Stella Biderman's avatar
Stella Biderman committed
125
126
127
128
129
130
131
132
133
134
135
        if rotary:
            return tensor
        if len(tensor.shape) == 5:
            return tensor.permute(0, 1, 3, 2, 4)  # (batch, blocks, head, block_length, head_features)
        elif len(tensor.shape) == 4:
            return tensor.permute(0, 2, 1, 3)  # (batch, head, seq_length, head_features)
        else:
            raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")

    def _merge_heads(self, tensor, num_attention_heads, attn_head_size):
        """
136
        Merges attn_head_size dim and num_attn_heads dim into hidden dim
Stella Biderman's avatar
Stella Biderman committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
        """
        if len(tensor.shape) == 5:
            tensor = tensor.permute(0, 1, 3, 2, 4).contiguous()
        elif len(tensor.shape) == 4:
            tensor = tensor.permute(0, 2, 1, 3).contiguous()
        else:
            raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")
        new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,)
        return tensor.view(new_shape)

    def _attn(
        self,
        query,
        key,
        value,
        attention_mask=None,
        head_mask=None,
    ):
        # compute causal mask from causal mask buffer
        query_length, key_length = query.size(-2), key.size(-2)
157
        causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length].to(torch.bool)
Stella Biderman's avatar
Stella Biderman committed
158
159
160
161
162
163

        # Keep the attention weights computation in fp32 to avoid overflow issues
        query = query.to(torch.float32)
        key = key.to(torch.float32)

        attn_weights = torch.matmul(query, key.transpose(-1, -2))
Yih-Dar's avatar
Yih-Dar committed
164
165
166
167
168
169

        mask_value = torch.finfo(attn_weights.dtype).min
        # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
        # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
        mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
        attn_weights = torch.where(causal_mask, attn_weights, mask_value)
Stella Biderman's avatar
Stella Biderman committed
170
171
172
173
174
175
176

        attn_weights = attn_weights / self.scale_attn

        if attention_mask is not None:
            # Apply the attention mask
            attn_weights = attn_weights + attention_mask

177
        attn_weights = nn.functional.softmax(attn_weights, dim=-1)
Stella Biderman's avatar
Stella Biderman committed
178
179
180
181
182
183
184
185
186
187
188
189
190
        attn_weights = attn_weights.to(value.dtype)
        attn_weights = self.attn_dropout(attn_weights)

        # Mask heads if we want to
        if head_mask is not None:
            attn_weights = attn_weights * head_mask

        attn_output = torch.matmul(attn_weights, value)

        return attn_output, attn_weights

    def forward(
        self,
191
192
193
194
195
196
197
198
199
200
        hidden_states: Optional[torch.FloatTensor],
        attention_mask: Optional[torch.FloatTensor] = None,
        layer_past: Optional[Tuple[torch.Tensor]] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
    ) -> Union[
        Tuple[torch.Tensor, Tuple[torch.Tensor]],
        Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]],
    ]:
Stella Biderman's avatar
Stella Biderman committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
        query = self.q_proj(hidden_states)
        key = self.k_proj(hidden_states)
        value = self.v_proj(hidden_states)

        query = self._split_heads(query, self.num_attention_heads, self.head_dim, True)
        key = self._split_heads(key, self.num_attention_heads, self.head_dim, True)
        value = self._split_heads(value, self.num_attention_heads, self.head_dim, False)

        seq_len = key.shape[1]
        offset = 0

        if layer_past is not None:
            offset = layer_past[0].shape[-2]
            seq_len += offset

        if self.rotary_dim is not None:
            k_rot = key[:, :, :, : self.rotary_dim]
            k_pass = key[:, :, :, self.rotary_dim :]

            q_rot = query[:, :, :, : self.rotary_dim]
            q_pass = query[:, :, :, self.rotary_dim :]

            sincos = fixed_pos_embedding(k_rot, 1, seq_len=seq_len)
            k_rot = apply_rotary_pos_emb(k_rot, sincos, offset=offset)
            q_rot = apply_rotary_pos_emb(q_rot, sincos, offset=offset)

            key = torch.cat([k_rot, k_pass], dim=-1)
            query = torch.cat([q_rot, q_pass], dim=-1)
        else:
            sincos = fixed_pos_embedding(key, 1, seq_len=seq_len)
            key = apply_rotary_pos_emb(key, sincos, offset=offset)
            query = apply_rotary_pos_emb(query, sincos, offset=offset)

        key = key.permute(0, 2, 1, 3)
        query = query.permute(0, 2, 1, 3)

        if layer_past is not None:
            past_key = layer_past[0]
            past_value = layer_past[1]
            key = torch.cat((past_key, key), dim=-2)
            value = torch.cat((past_value, value), dim=-2)

        if use_cache is True:
            present = (key, value)
        else:
            present = None

        # compute self-attention: V x Softmax(QK^T)
        attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)

        attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim)
        attn_output = self.out_proj(attn_output)
        attn_output = self.resid_dropout(attn_output)

        outputs = (attn_output, present)
        if output_attentions:
            outputs += (attn_weights,)

        return outputs  # a, present, (attentions)


class GPTJMLP(nn.Module):
    def __init__(self, intermediate_size, config):  # in MLP: intermediate_size= 4 * embed_dim
        super().__init__()
        embed_dim = config.n_embd

        self.fc_in = nn.Linear(embed_dim, intermediate_size)
        self.fc_out = nn.Linear(intermediate_size, embed_dim)

        self.act = ACT2FN[config.activation_function]
        self.dropout = nn.Dropout(config.resid_pdrop)

273
    def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor:
Stella Biderman's avatar
Stella Biderman committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
        hidden_states = self.fc_in(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.fc_out(hidden_states)
        hidden_states = self.dropout(hidden_states)
        return hidden_states


class GPTJBlock(nn.Module):
    def __init__(self, config):
        super().__init__()
        inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
        self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
        self.attn = GPTJAttention(config)
        self.mlp = GPTJMLP(inner_dim, config)

    def forward(
        self,
291
292
293
294
295
296
297
        hidden_states: Optional[torch.FloatTensor],
        layer_past: Optional[Tuple[torch.Tensor]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
    ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
Stella Biderman's avatar
Stella Biderman committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
        residual = hidden_states
        hidden_states = self.ln_1(hidden_states)
        attn_outputs = self.attn(
            hidden_states,
            layer_past=layer_past,
            attention_mask=attention_mask,
            head_mask=head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
        )
        attn_output = attn_outputs[0]  # output_attn: a, present, (attentions)
        outputs = attn_outputs[1:]

        feed_forward_hidden_states = self.mlp(hidden_states)
        hidden_states = attn_output + feed_forward_hidden_states + residual

        if use_cache:
            outputs = (hidden_states,) + outputs
        else:
            outputs = (hidden_states,) + outputs[1:]

        return outputs  # hidden_states, present, (attentions)


class GPTJPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = GPTJConfig
    base_model_prefix = "transformer"
    is_parallelizable = True
331
    supports_gradient_checkpointing = True
332
    _no_split_modules = ["GPTJBlock"]
Stella Biderman's avatar
Stella Biderman committed
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352

    def __init__(self, *inputs, **kwargs):
        super().__init__(*inputs, **kwargs)

    def _init_weights(self, module):
        """Initialize the weights."""
        if isinstance(module, (nn.Linear,)):
            # Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

353
354
355
356
    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, GPTJModel):
            module.gradient_checkpointing = value

Stella Biderman's avatar
Stella Biderman committed
357
358

GPTJ_START_DOCSTRING = r"""
359
    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
Stella Biderman's avatar
Stella Biderman committed
360
361
362
363
    it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
364
        config ([`GPTJConfig`]): Model configuration class with all the parameters of the model.
Stella Biderman's avatar
Stella Biderman committed
365
            Initializing with a config file does not load the weights associated with the model, only the
Sylvain Gugger's avatar
Sylvain Gugger committed
366
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
Stella Biderman's avatar
Stella Biderman committed
367
368
369
370
"""

GPTJ_INPUTS_DOCSTRING = r"""
    Args:
371
        input_ids (`torch.LongTensor` of shape `({0})`):
Stella Biderman's avatar
Stella Biderman committed
372
373
            Indices of input sequence tokens in the vocabulary.

Sylvain Gugger's avatar
Sylvain Gugger committed
374
            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
Sylvain Gugger's avatar
Sylvain Gugger committed
375
            [`PreTrainedTokenizer.__call__`] for details.
Stella Biderman's avatar
Stella Biderman committed
376

377
378
379
            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
Stella Biderman's avatar
Stella Biderman committed
380
381
382
383

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

384
385
            [What are attention masks?](../glossary#attention-mask)
        token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
386
387
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
            1]`:
Stella Biderman's avatar
Stella Biderman committed
388

389
390
            - 0 corresponds to a *sentence A* token,
            - 1 corresponds to a *sentence B* token.
Stella Biderman's avatar
Stella Biderman committed
391

392
393
            [What are token type IDs?](../glossary#token-type-ids)
        position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
394
395
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.n_positions - 1]`.
Stella Biderman's avatar
Stella Biderman committed
396

397
398
399
            [What are position IDs?](../glossary#position-ids)
        head_mask (`torch.FloatTensor` of shape `(num_attention_heads,)` or `(n_layer, num_attention_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
Stella Biderman's avatar
Stella Biderman committed
400
401
402
403

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

404
        inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_dim)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
405
406
407
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
            model's internal embedding lookup matrix.
408
409
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
Stella Biderman's avatar
Stella Biderman committed
410
            tensors for more detail.
411
412
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
Stella Biderman's avatar
Stella Biderman committed
413
            more detail.
414
        return_dict (`bool`, *optional*):
415
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Stella Biderman's avatar
Stella Biderman committed
416
417
418
419
420
421
422
423
"""

PARALLELIZE_DOCSTRING = r"""
    This is an experimental feature and is a subject to change at a moment's notice. Uses a device map to distribute
    attention modules of the model across several devices. If no device map is given, it will evenly distribute blocks
    across all devices.

    Args:
424
        device_map (`Dict[int, list]`, optional, defaults to None):
Stella Biderman's avatar
Stella Biderman committed
425
426
427
428
429
430
431
            A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
            automatically mapped to the first device (for esoteric reasons). That means that the first device should
            have fewer attention modules mapped to it than other devices. For reference, the GPT-J models have the
            following number of attention modules:

                - gpt-j-6B: 28

432
433
434
435
    Example:

    ```python
    # Here is an example of a device map on a machine with 4 GPUs using gpt-j-6B, which has a total of 28 attention modules:
Sylvain Gugger's avatar
Sylvain Gugger committed
436
437
438
439
440
441
442
    model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
    device_map = {
        0: [0, 1, 2, 3, 4, 5, 6],
        1: [7, 8, 9, 10, 11, 12, 13],
        2: [14, 15, 16, 17, 18, 19, 20],
        3: [21, 22, 23, 24, 25, 26, 27],
    }
443
444
    model.parallelize(device_map)
    ```
Stella Biderman's avatar
Stella Biderman committed
445
446
447
448
449
"""

DEPARALLELIZE_DOCSTRING = r"""
    Moves the model to CPU from a model parallel state.

450
451
452
453
    Example:

    ```python
    # On a 4 GPU machine with gpt-j-6B:
Sylvain Gugger's avatar
Sylvain Gugger committed
454
455
456
457
458
459
460
461
462
    model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
    device_map = {
        0: [0, 1, 2, 3, 4, 5, 6],
        1: [7, 8, 9, 10, 11, 12, 13],
        2: [14, 15, 16, 17, 18, 19, 20],
        3: [21, 22, 23, 24, 25, 26, 27],
    }
    model.parallelize(device_map)  # Splits the model across several devices
    model.deparallelize()  # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
463
    ```
Stella Biderman's avatar
Stella Biderman committed
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
"""


@add_start_docstrings(
    "The bare GPT-J Model transformer outputting raw hidden-states without any specific head on top.",
    GPTJ_START_DOCSTRING,
)
class GPTJModel(GPTJPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.embed_dim = config.n_embd
        self.vocab_size = config.vocab_size
        self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
        self.drop = nn.Dropout(config.embd_pdrop)
        self.h = nn.ModuleList([GPTJBlock(config) for _ in range(config.n_layer)])
        self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)

        # Model parallel
        self.model_parallel = False
        self.device_map = None
485
        self.gradient_checkpointing = False
Stella Biderman's avatar
Stella Biderman committed
486

487
488
489
        # Initialize weights and apply final processing
        self.post_init()

Stella Biderman's avatar
Stella Biderman committed
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
    @add_start_docstrings(PARALLELIZE_DOCSTRING)
    def parallelize(self, device_map=None):
        # Check validity of device_map
        self.device_map = (
            get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
        )
        assert_device_map(self.device_map, len(self.h))
        self.model_parallel = True
        self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
        self.last_device = "cuda:" + str(max(self.device_map.keys()))
        self.wte = self.wte.to(self.first_device)
        # Load onto devices
        for k, v in self.device_map.items():
            for block in v:
                cuda_device = "cuda:" + str(k)
                self.h[block] = self.h[block].to(cuda_device)
        # ln_f to last
        self.ln_f = self.ln_f.to(self.last_device)

    @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
    def deparallelize(self):
        self.model_parallel = False
        self.device_map = None
        self.first_device = "cpu"
        self.last_device = "cpu"
        self.wte = self.wte.to("cpu")
        for index in range(len(self.h)):
            self.h[index] = self.h[index].to("cpu")
        self.ln_f = self.ln_f.to("cpu")
        torch.cuda.empty_cache()

    def get_input_embeddings(self):
        return self.wte

    def set_input_embeddings(self, new_embeddings):
        self.wte = new_embeddings

    @add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=BaseModelOutputWithPast,
        config_class=_CONFIG_FOR_DOC,
532
        real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
Stella Biderman's avatar
Stella Biderman committed
533
534
535
    )
    def forward(
        self,
536
537
538
539
540
541
542
543
544
545
546
547
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:
Stella Biderman's avatar
Stella Biderman committed
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
            batch_size = input_ids.shape[0]
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
            batch_size = inputs_embeds.shape[0]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, input_shape[-1])

        if position_ids is not None:
            position_ids = position_ids.view(-1, input_shape[-1])

        if past_key_values is None:
            past_length = 0
            past_key_values = tuple([None] * len(self.h))
        else:
            past_length = past_key_values[0][0].size(-2)

        if position_ids is None:
            position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
            position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])

        # Attention mask.
        if attention_mask is not None:
587
588
            if batch_size <= 0:
                raise ValueError("batch_size has to be defined and > 0")
Stella Biderman's avatar
Stella Biderman committed
589
590
591
592
593
594
595
596
597
598
            attention_mask = attention_mask.view(batch_size, -1)
            # We create a 3D attention mask from a 2D tensor mask.
            # Sizes are [batch_size, 1, 1, to_seq_length]
            # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
            # this attention mask is more simple than the triangular masking of causal attention
            # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
            attention_mask = attention_mask[:, None, None, :]

            # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
            # masked positions, this operation will create a tensor which is 0.0 for
599
            # positions we want to attend and the dtype's smallest value for masked positions.
Stella Biderman's avatar
Stella Biderman committed
600
601
602
            # Since we are adding it to the raw scores before the softmax, this is
            # effectively the same as removing these entirely.
            attention_mask = attention_mask.to(dtype=self.dtype)  # fp16 compatibility
Yih-Dar's avatar
Yih-Dar committed
603
            attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
Stella Biderman's avatar
Stella Biderman committed
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x num_attention_heads x N x N
        # head_mask has shape n_layer x batch x num_attention_heads x N x N
        head_mask = self.get_head_mask(head_mask, self.config.n_layer)

        if inputs_embeds is None:
            inputs_embeds = self.wte(input_ids)

        hidden_states = inputs_embeds

        if token_type_ids is not None:
            token_type_embeds = self.wte(token_type_ids)
            hidden_states = hidden_states + token_type_embeds

        hidden_states = self.drop(hidden_states)

        output_shape = input_shape + (hidden_states.size(-1),)

        presents = () if use_cache else None
        all_self_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None
        for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
            # Model parallel
            if self.model_parallel:
                torch.cuda.set_device(hidden_states.device)
                # Ensure layer_past is on same device as hidden_states (might not be correct)
                if layer_past is not None:
                    layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
                # Ensure that attention_mask is always on the same device as hidden_states
                if attention_mask is not None:
                    attention_mask = attention_mask.to(hidden_states.device)
                if isinstance(head_mask, torch.Tensor):
                    head_mask = head_mask.to(hidden_states.device)
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

642
            if self.gradient_checkpointing and self.training:
Stella Biderman's avatar
Stella Biderman committed
643
644
                if use_cache:
                    logger.warning(
645
                        "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
Stella Biderman's avatar
Stella Biderman committed
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
                    )
                    use_cache = False

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, use_cache, output_attentions)

                    return custom_forward

                outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    None,
                    attention_mask,
                    head_mask[i],
                )
            else:
                outputs = block(
                    hidden_states,
                    layer_past=layer_past,
                    attention_mask=attention_mask,
                    head_mask=head_mask[i],
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                )

            hidden_states = outputs[0]
            if use_cache is True:
                presents = presents + (outputs[1],)

            if output_attentions:
                all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)

            # Model Parallel: If it's the last layer for that device, put things on the next device
            if self.model_parallel:
                for k, v in self.device_map.items():
                    if i == v[-1] and "cuda:" + str(k) != self.last_device:
                        hidden_states = hidden_states.to("cuda:" + str(k + 1))

        hidden_states = self.ln_f(hidden_states)

688
        hidden_states = hidden_states.view(output_shape)
Stella Biderman's avatar
Stella Biderman committed
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
        # Add last hidden state
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )


@add_start_docstrings(
    """
Suraj Patil's avatar
Suraj Patil committed
706
    The GPT-J Model transformer with a language modeling head on top.
Stella Biderman's avatar
Stella Biderman committed
707
708
709
710
    """,
    GPTJ_START_DOCSTRING,
)
class GPTJForCausalLM(GPTJPreTrainedModel):
711
    _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias"]
Stella Biderman's avatar
Stella Biderman committed
712
713
714
715
716
717
718
719
720
721

    def __init__(self, config):
        super().__init__(config)
        self.transformer = GPTJModel(config)
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size)

        # Model parallel
        self.model_parallel = False
        self.device_map = None

722
723
724
        # Initialize weights and apply final processing
        self.post_init()

Stella Biderman's avatar
Stella Biderman committed
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
    @add_start_docstrings(PARALLELIZE_DOCSTRING)
    def parallelize(self, device_map=None):
        self.device_map = (
            get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
            if device_map is None
            else device_map
        )
        assert_device_map(self.device_map, len(self.transformer.h))
        self.transformer.parallelize(self.device_map)
        self.lm_head = self.lm_head.to(self.transformer.first_device)
        self.model_parallel = True

    @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
    def deparallelize(self):
        self.transformer.deparallelize()
        self.transformer = self.transformer.to("cpu")
        self.lm_head = self.lm_head.to("cpu")
        self.model_parallel = False
        torch.cuda.empty_cache()

    def get_output_embeddings(self):
746
        return self.lm_head
Stella Biderman's avatar
Stella Biderman committed
747
748

    def set_output_embeddings(self, new_embeddings):
749
        self.lm_head = new_embeddings
Stella Biderman's avatar
Stella Biderman committed
750

751
    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
Stella Biderman's avatar
Stella Biderman committed
752
753
        token_type_ids = kwargs.get("token_type_ids", None)
        # only last token for inputs_ids if past is defined in kwargs
754
        if past_key_values:
Stella Biderman's avatar
Stella Biderman committed
755
756
757
758
759
760
761
762
763
764
765
            input_ids = input_ids[:, -1].unsqueeze(-1)
            if token_type_ids is not None:
                token_type_ids = token_type_ids[:, -1].unsqueeze(-1)

        attention_mask = kwargs.get("attention_mask", None)
        position_ids = kwargs.get("position_ids", None)

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
766
            if past_key_values:
Stella Biderman's avatar
Stella Biderman committed
767
768
769
770
771
                position_ids = position_ids[:, -1].unsqueeze(-1)
        else:
            position_ids = None
        return {
            "input_ids": input_ids,
772
            "past_key_values": past_key_values,
Stella Biderman's avatar
Stella Biderman committed
773
774
775
776
777
778
779
780
781
782
783
            "use_cache": kwargs.get("use_cache"),
            "position_ids": position_ids,
            "attention_mask": attention_mask,
            "token_type_ids": token_type_ids,
        }

    @add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=CausalLMOutputWithPast,
        config_class=_CONFIG_FOR_DOC,
784
        real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
Stella Biderman's avatar
Stella Biderman committed
785
786
787
    )
    def forward(
        self,
788
789
790
791
792
793
794
795
796
797
798
799
800
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
Stella Biderman's avatar
Stella Biderman committed
801
        r"""
802
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Stella Biderman's avatar
Stella Biderman committed
803
            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
Sylvain Gugger's avatar
Sylvain Gugger committed
804
805
            `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
            are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
Stella Biderman's avatar
Stella Biderman committed
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]

        # Set device for model parallelism
        if self.model_parallel:
            torch.cuda.set_device(self.transformer.first_device)
            hidden_states = hidden_states.to(self.lm_head.weight.device)

        # make sure sampling in fp16 works correctly and
        # compute loss in fp32 to match with mesh-tf version
        # https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
        lm_logits = self.lm_head(hidden_states).to(torch.float32)

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))

            loss = loss.to(hidden_states.dtype)

        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )

    @staticmethod
    def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
860
861
862
        This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
        [`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
        beam_idx at every generation step.
Stella Biderman's avatar
Stella Biderman committed
863
864
865
866
867
868
869
870
871
872
873
        """
        return tuple(
            tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
            for layer_past in past
        )


@add_start_docstrings(
    """
    The GPT-J Model transformer with a sequence classification head on top (linear layer).

Sylvain Gugger's avatar
Sylvain Gugger committed
874
875
    [`GPTJForSequenceClassification`] uses the last token in order to do the classification, as other causal models
    (e.g. GPT, GPT-2, GPT-Neo) do.
Stella Biderman's avatar
Stella Biderman committed
876
877

    Since it does classification on the last token, it requires to know the position of the last token. If a
Sylvain Gugger's avatar
Sylvain Gugger committed
878
879
880
881
    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
    each row of the batch).
Stella Biderman's avatar
Stella Biderman committed
882
883
884
885
    """,
    GPTJ_START_DOCSTRING,
)
class GPTJForSequenceClassification(GPTJPreTrainedModel):
886
    _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias", r"lm_head.weight"]
Stella Biderman's avatar
Stella Biderman committed
887
888
889
890
891

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.transformer = GPTJModel(config)
892
        self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
Stella Biderman's avatar
Stella Biderman committed
893
894
895
896
897

        # Model parallel
        self.model_parallel = False
        self.device_map = None

898
899
900
        # Initialize weights and apply final processing
        self.post_init()

Stella Biderman's avatar
Stella Biderman committed
901
902
    @add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
Yih-Dar's avatar
Yih-Dar committed
903
        checkpoint="ydshieh/tiny-random-gptj-for-sequence-classification",
Stella Biderman's avatar
Stella Biderman committed
904
905
        output_type=SequenceClassifierOutputWithPast,
        config_class=_CONFIG_FOR_DOC,
906
        real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
Stella Biderman's avatar
Stella Biderman committed
907
908
909
    )
    def forward(
        self,
910
911
912
913
914
915
916
917
918
919
920
921
922
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
Stella Biderman's avatar
Stella Biderman committed
923
        r"""
924
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
925
926
927
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Stella Biderman's avatar
Stella Biderman committed
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

952
953
        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
Stella Biderman's avatar
Stella Biderman committed
954
955
956
957
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
Yih-Dar's avatar
Yih-Dar committed
958
                sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
Stella Biderman's avatar
Stella Biderman committed
959
960
961
962
            else:
                sequence_lengths = -1
                logger.warning(
                    f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
Sylvain Gugger's avatar
Sylvain Gugger committed
963
                    "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
Stella Biderman's avatar
Stella Biderman committed
964
965
                )

966
        pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
Stella Biderman's avatar
Stella Biderman committed
967
968
969

        loss = None
        if labels is not None:
970
971
972
973
974
975
976
977
978
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
Stella Biderman's avatar
Stella Biderman committed
979
                loss_fct = MSELoss()
980
981
982
983
984
                if self.num_labels == 1:
                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(pooled_logits, labels)
            elif self.config.problem_type == "single_label_classification":
Stella Biderman's avatar
Stella Biderman committed
985
986
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
987
988
989
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(pooled_logits, labels)
Stella Biderman's avatar
Stella Biderman committed
990
991
992
993
994
995
996
997
998
999
1000
        if not return_dict:
            output = (pooled_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010


@add_start_docstrings(
    """
    The GPT-J Model transformer with a span classification head on top for extractive question-answering tasks like
    SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
    """,
    GPTJ_START_DOCSTRING,
)
class GPTJForQuestionAnswering(GPTJPreTrainedModel):
1011
    _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias", r"lm_head.weight"]
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.transformer = GPTJModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        # Model parallel
        self.model_parallel = False
        self.device_map = None

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
1028
        checkpoint=_CHECKPOINT_FOR_DOC,
1029
1030
        output_type=QuestionAnsweringModelOutput,
        config_class=_CONFIG_FOR_DOC,
1031
        real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
1032
1033
1034
    )
    def forward(
        self,
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        end_positions: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1047
        r"""
1048
        start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1049
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
Sylvain Gugger's avatar
Sylvain Gugger committed
1050
1051
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
1052
        end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1053
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
Sylvain Gugger's avatar
Sylvain Gugger committed
1054
1055
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1).contiguous()
        end_logits = end_logits.squeeze(-1).contiguous()

        total_loss = None
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions = start_positions.clamp(0, ignored_index)
            end_positions = end_positions.clamp(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

        if not return_dict:
            output = (start_logits, end_logits) + outputs[2:]
            return ((total_loss,) + output) if total_loss is not None else output

        return QuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )