"vscode:/vscode.git/clone" did not exist on "06f561687c94f572b03ef71d707b697401b34ce9"
run_image_classification.py 17.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import logging
import os
import sys
19
import warnings
20
21
22
from dataclasses import dataclass, field
from typing import Optional

23
import evaluate
24
25
26
27
28
29
30
import numpy as np
import torch
from datasets import load_dataset
from PIL import Image
from torchvision.transforms import (
    CenterCrop,
    Compose,
31
    Lambda,
32
33
34
35
36
37
38
39
40
41
42
    Normalize,
    RandomHorizontalFlip,
    RandomResizedCrop,
    Resize,
    ToTensor,
)

import transformers
from transformers import (
    MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
    AutoConfig,
43
    AutoImageProcessor,
44
45
46
47
    AutoModelForImageClassification,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
48
    set_seed,
49
50
)
from transformers.trainer_utils import get_last_checkpoint
51
from transformers.utils import check_min_version, send_example_telemetry
52
53
54
55
56
57
58
59
from transformers.utils.versions import require_version


""" Fine-tuning a 🤗 Transformers model for image classification"""

logger = logging.getLogger(__name__)

# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre's avatar
Lysandre committed
60
check_min_version("4.37.0.dev0")
61

62
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt")
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

MODEL_CONFIG_CLASSES = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


def pil_loader(path: str):
    with open(path, "rb") as f:
        im = Image.open(f)
        return im.convert("RGB")


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
78
79
    Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify
    them on the command line.
80
81
82
    """

    dataset_name: Optional[str] = field(
83
84
85
86
        default=None,
        metadata={
            "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)."
        },
87
88
89
90
91
92
93
94
95
96
97
98
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the training data."})
    validation_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the validation data."})
    train_val_split: Optional[float] = field(
        default=0.15, metadata={"help": "Percent to split off of train for validation."}
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
99
100
101
102
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
103
104
105
106
107
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
108
109
110
111
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
112
113
        },
    )
114
115
116
117
118
119
120
121
    image_column_name: str = field(
        default="image",
        metadata={"help": "The name of the dataset column containing the image data. Defaults to 'image'."},
    )
    label_column_name: str = field(
        default="label",
        metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'."},
    )
122
123

    def __post_init__(self):
124
125
126
127
        if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None):
            raise ValueError(
                "You must specify either a dataset name from the hub or a train and/or validation directory."
            )
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        default="google/vit-base-patch16-224-in21k",
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
154
    image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."})
155
156
    token: str = field(
        default=None,
157
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
158
            "help": (
159
160
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
161
            )
162
163
        },
    )
164
165
166
    use_auth_token: bool = field(
        default=None,
        metadata={
167
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
168
169
        },
    )
170
171
172
173
174
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option"
175
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
176
177
178
179
                "execute code present on the Hub on your local machine."
            )
        },
    )
180
181
182
183
    ignore_mismatched_sizes: bool = field(
        default=False,
        metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
    )
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

199
    if model_args.use_auth_token is not None:
200
201
202
203
        warnings.warn(
            "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
            FutureWarning,
        )
204
205
206
207
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

208
209
210
211
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_image_classification", model_args, data_args)

212
213
214
215
216
217
218
    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

219
220
221
222
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

223
224
225
226
227
228
229
230
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
231
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
232
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

251
252
253
    # Set seed before initializing model.
    set_seed(training_args.seed)

254
    # Initialize our dataset and prepare it for the 'image-classification' task.
255
256
257
258
259
    if data_args.dataset_name is not None:
        dataset = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
260
            token=model_args.token,
261
262
263
264
265
266
267
268
269
270
271
272
        )
    else:
        data_files = {}
        if data_args.train_dir is not None:
            data_files["train"] = os.path.join(data_args.train_dir, "**")
        if data_args.validation_dir is not None:
            data_files["validation"] = os.path.join(data_args.validation_dir, "**")
        dataset = load_dataset(
            "imagefolder",
            data_files=data_files,
            cache_dir=model_args.cache_dir,
        )
273

274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
    dataset_column_names = dataset["train"].column_names if "train" in dataset else dataset["validation"].column_names
    if data_args.image_column_name not in dataset_column_names:
        raise ValueError(
            f"--image_column_name {data_args.image_column_name} not found in dataset '{data_args.dataset_name}'. "
            "Make sure to set `--image_column_name` to the correct audio column - one of "
            f"{', '.join(dataset_column_names)}."
        )
    if data_args.label_column_name not in dataset_column_names:
        raise ValueError(
            f"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. "
            "Make sure to set `--label_column_name` to the correct text column - one of "
            f"{', '.join(dataset_column_names)}."
        )

    def collate_fn(examples):
        pixel_values = torch.stack([example["pixel_values"] for example in examples])
        labels = torch.tensor([example[data_args.label_column_name] for example in examples])
        return {"pixel_values": pixel_values, "labels": labels}

293
    # If we don't have a validation split, split off a percentage of train as validation.
294
    data_args.train_val_split = None if "validation" in dataset.keys() else data_args.train_val_split
295
    if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0:
296
297
298
        split = dataset["train"].train_test_split(data_args.train_val_split)
        dataset["train"] = split["train"]
        dataset["validation"] = split["test"]
299
300
301

    # Prepare label mappings.
    # We'll include these in the model's config to get human readable labels in the Inference API.
302
    labels = dataset["train"].features[data_args.label_column_name].names
303
    label2id, id2label = {}, {}
304
305
306
307
308
    for i, label in enumerate(labels):
        label2id[label] = str(i)
        id2label[str(i)] = label

    # Load the accuracy metric from the datasets package
309
    metric = evaluate.load("accuracy", cache_dir=model_args.cache_dir)
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

    # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    def compute_metrics(p):
        """Computes accuracy on a batch of predictions"""
        return metric.compute(predictions=np.argmax(p.predictions, axis=1), references=p.label_ids)

    config = AutoConfig.from_pretrained(
        model_args.config_name or model_args.model_name_or_path,
        num_labels=len(labels),
        label2id=label2id,
        id2label=id2label,
        finetuning_task="image-classification",
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
325
        token=model_args.token,
326
        trust_remote_code=model_args.trust_remote_code,
327
328
329
330
331
332
333
    )
    model = AutoModelForImageClassification.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
334
        token=model_args.token,
335
        trust_remote_code=model_args.trust_remote_code,
336
        ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
337
    )
338
339
    image_processor = AutoImageProcessor.from_pretrained(
        model_args.image_processor_name or model_args.model_name_or_path,
340
341
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
342
        token=model_args.token,
343
        trust_remote_code=model_args.trust_remote_code,
344
345
    )

346
    # Define torchvision transforms to be applied to each image.
347
348
    if "shortest_edge" in image_processor.size:
        size = image_processor.size["shortest_edge"]
amyeroberts's avatar
amyeroberts committed
349
    else:
350
        size = (image_processor.size["height"], image_processor.size["width"])
351
352
353
354
355
    normalize = (
        Normalize(mean=image_processor.image_mean, std=image_processor.image_std)
        if hasattr(image_processor, "image_mean") and hasattr(image_processor, "image_std")
        else Lambda(lambda x: x)
    )
356
357
    _train_transforms = Compose(
        [
amyeroberts's avatar
amyeroberts committed
358
            RandomResizedCrop(size),
359
360
361
362
363
364
365
            RandomHorizontalFlip(),
            ToTensor(),
            normalize,
        ]
    )
    _val_transforms = Compose(
        [
amyeroberts's avatar
amyeroberts committed
366
367
            Resize(size),
            CenterCrop(size),
368
369
370
371
372
373
374
            ToTensor(),
            normalize,
        ]
    )

    def train_transforms(example_batch):
        """Apply _train_transforms across a batch."""
375
        example_batch["pixel_values"] = [
376
            _train_transforms(pil_img.convert("RGB")) for pil_img in example_batch[data_args.image_column_name]
377
        ]
378
379
380
381
        return example_batch

    def val_transforms(example_batch):
        """Apply _val_transforms across a batch."""
382
383
384
        example_batch["pixel_values"] = [
            _val_transforms(pil_img.convert("RGB")) for pil_img in example_batch[data_args.image_column_name]
        ]
385
386
        return example_batch

387
    if training_args.do_train:
388
        if "train" not in dataset:
389
390
            raise ValueError("--do_train requires a train dataset")
        if data_args.max_train_samples is not None:
391
392
393
            dataset["train"] = (
                dataset["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples))
            )
394
        # Set the training transforms
395
        dataset["train"].set_transform(train_transforms)
396
397

    if training_args.do_eval:
398
        if "validation" not in dataset:
399
400
            raise ValueError("--do_eval requires a validation dataset")
        if data_args.max_eval_samples is not None:
401
402
            dataset["validation"] = (
                dataset["validation"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
403
404
            )
        # Set the validation transforms
405
        dataset["validation"].set_transform(val_transforms)
406
407
408
409
410

    # Initalize our trainer
    trainer = Trainer(
        model=model,
        args=training_args,
411
412
        train_dataset=dataset["train"] if training_args.do_train else None,
        eval_dataset=dataset["validation"] if training_args.do_eval else None,
413
        compute_metrics=compute_metrics,
414
        tokenizer=image_processor,
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
        data_collator=collate_fn,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()
        trainer.log_metrics("train", train_result.metrics)
        trainer.save_metrics("train", train_result.metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        metrics = trainer.evaluate()
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Write model card and (optionally) push to hub
    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "tasks": "image-classification",
        "dataset": data_args.dataset_name,
442
        "tags": ["image-classification", "vision"],
443
444
445
446
447
448
449
450
451
    }
    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)


if __name__ == "__main__":
    main()