"vscode:/vscode.git/clone" did not exist on "5da7c78ed80f97842c929e0eea63bfa2ac8267eb"
run_image_classification.py 16.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import logging
import os
import sys
19
import warnings
20
21
22
from dataclasses import dataclass, field
from typing import Optional

23
import evaluate
24
25
26
27
28
29
30
import numpy as np
import torch
from datasets import load_dataset
from PIL import Image
from torchvision.transforms import (
    CenterCrop,
    Compose,
31
    Lambda,
32
33
34
35
36
37
38
39
40
41
42
    Normalize,
    RandomHorizontalFlip,
    RandomResizedCrop,
    Resize,
    ToTensor,
)

import transformers
from transformers import (
    MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
    AutoConfig,
43
    AutoImageProcessor,
44
45
46
47
    AutoModelForImageClassification,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
48
    set_seed,
49
50
)
from transformers.trainer_utils import get_last_checkpoint
51
from transformers.utils import check_min_version, send_example_telemetry
52
53
54
55
56
57
58
59
from transformers.utils.versions import require_version


""" Fine-tuning a 🤗 Transformers model for image classification"""

logger = logging.getLogger(__name__)

# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre's avatar
Lysandre committed
60
check_min_version("4.35.0.dev0")
61

62
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt")
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

MODEL_CONFIG_CLASSES = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


def pil_loader(path: str):
    with open(path, "rb") as f:
        im = Image.open(f)
        return im.convert("RGB")


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
78
79
    Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify
    them on the command line.
80
81
82
    """

    dataset_name: Optional[str] = field(
83
84
85
86
        default=None,
        metadata={
            "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)."
        },
87
88
89
90
91
92
93
94
95
96
97
98
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the training data."})
    validation_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the validation data."})
    train_val_split: Optional[float] = field(
        default=0.15, metadata={"help": "Percent to split off of train for validation."}
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
99
100
101
102
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
103
104
105
106
107
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
108
109
110
111
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
112
113
114
115
        },
    )

    def __post_init__(self):
116
117
118
119
        if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None):
            raise ValueError(
                "You must specify either a dataset name from the hub or a train and/or validation directory."
            )
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        default="google/vit-base-patch16-224-in21k",
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
146
    image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."})
147
148
    token: str = field(
        default=None,
149
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
150
            "help": (
151
152
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
153
            )
154
155
        },
    )
156
157
158
159
160
161
    use_auth_token: bool = field(
        default=None,
        metadata={
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
        },
    )
162
163
164
165
166
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option"
167
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
168
169
170
171
                "execute code present on the Hub on your local machine."
            )
        },
    )
172
173
174
175
    ignore_mismatched_sizes: bool = field(
        default=False,
        metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
    )
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196


def collate_fn(examples):
    pixel_values = torch.stack([example["pixel_values"] for example in examples])
    labels = torch.tensor([example["labels"] for example in examples])
    return {"pixel_values": pixel_values, "labels": labels}


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

197
198
199
200
201
202
    if model_args.use_auth_token is not None:
        warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

203
204
205
206
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_image_classification", model_args, data_args)

207
208
209
210
211
212
213
    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

214
215
216
217
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

218
219
220
221
222
223
224
225
226
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
227
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

246
247
248
    # Set seed before initializing model.
    set_seed(training_args.seed)

249
    # Initialize our dataset and prepare it for the 'image-classification' task.
250
251
252
253
254
255
    if data_args.dataset_name is not None:
        dataset = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            task="image-classification",
256
            token=model_args.token,
257
258
259
260
261
262
263
264
265
266
267
268
269
        )
    else:
        data_files = {}
        if data_args.train_dir is not None:
            data_files["train"] = os.path.join(data_args.train_dir, "**")
        if data_args.validation_dir is not None:
            data_files["validation"] = os.path.join(data_args.validation_dir, "**")
        dataset = load_dataset(
            "imagefolder",
            data_files=data_files,
            cache_dir=model_args.cache_dir,
            task="image-classification",
        )
270
271

    # If we don't have a validation split, split off a percentage of train as validation.
272
    data_args.train_val_split = None if "validation" in dataset.keys() else data_args.train_val_split
273
    if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0:
274
275
276
        split = dataset["train"].train_test_split(data_args.train_val_split)
        dataset["train"] = split["train"]
        dataset["validation"] = split["test"]
277
278
279

    # Prepare label mappings.
    # We'll include these in the model's config to get human readable labels in the Inference API.
280
    labels = dataset["train"].features["labels"].names
281
    label2id, id2label = {}, {}
282
283
284
285
286
    for i, label in enumerate(labels):
        label2id[label] = str(i)
        id2label[str(i)] = label

    # Load the accuracy metric from the datasets package
287
    metric = evaluate.load("accuracy")
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

    # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    def compute_metrics(p):
        """Computes accuracy on a batch of predictions"""
        return metric.compute(predictions=np.argmax(p.predictions, axis=1), references=p.label_ids)

    config = AutoConfig.from_pretrained(
        model_args.config_name or model_args.model_name_or_path,
        num_labels=len(labels),
        label2id=label2id,
        id2label=id2label,
        finetuning_task="image-classification",
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
303
        token=model_args.token,
304
        trust_remote_code=model_args.trust_remote_code,
305
306
307
308
309
310
311
    )
    model = AutoModelForImageClassification.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
312
        token=model_args.token,
313
        trust_remote_code=model_args.trust_remote_code,
314
        ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
315
    )
316
317
    image_processor = AutoImageProcessor.from_pretrained(
        model_args.image_processor_name or model_args.model_name_or_path,
318
319
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
320
        token=model_args.token,
321
        trust_remote_code=model_args.trust_remote_code,
322
323
    )

324
    # Define torchvision transforms to be applied to each image.
325
326
    if "shortest_edge" in image_processor.size:
        size = image_processor.size["shortest_edge"]
amyeroberts's avatar
amyeroberts committed
327
    else:
328
        size = (image_processor.size["height"], image_processor.size["width"])
329
330
331
332
333
    normalize = (
        Normalize(mean=image_processor.image_mean, std=image_processor.image_std)
        if hasattr(image_processor, "image_mean") and hasattr(image_processor, "image_std")
        else Lambda(lambda x: x)
    )
334
335
    _train_transforms = Compose(
        [
amyeroberts's avatar
amyeroberts committed
336
            RandomResizedCrop(size),
337
338
339
340
341
342
343
            RandomHorizontalFlip(),
            ToTensor(),
            normalize,
        ]
    )
    _val_transforms = Compose(
        [
amyeroberts's avatar
amyeroberts committed
344
345
            Resize(size),
            CenterCrop(size),
346
347
348
349
350
351
352
            ToTensor(),
            normalize,
        ]
    )

    def train_transforms(example_batch):
        """Apply _train_transforms across a batch."""
353
354
355
        example_batch["pixel_values"] = [
            _train_transforms(pil_img.convert("RGB")) for pil_img in example_batch["image"]
        ]
356
357
358
359
        return example_batch

    def val_transforms(example_batch):
        """Apply _val_transforms across a batch."""
360
        example_batch["pixel_values"] = [_val_transforms(pil_img.convert("RGB")) for pil_img in example_batch["image"]]
361
362
        return example_batch

363
    if training_args.do_train:
364
        if "train" not in dataset:
365
366
            raise ValueError("--do_train requires a train dataset")
        if data_args.max_train_samples is not None:
367
368
369
            dataset["train"] = (
                dataset["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples))
            )
370
        # Set the training transforms
371
        dataset["train"].set_transform(train_transforms)
372
373

    if training_args.do_eval:
374
        if "validation" not in dataset:
375
376
            raise ValueError("--do_eval requires a validation dataset")
        if data_args.max_eval_samples is not None:
377
378
            dataset["validation"] = (
                dataset["validation"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
379
380
            )
        # Set the validation transforms
381
        dataset["validation"].set_transform(val_transforms)
382
383
384
385
386

    # Initalize our trainer
    trainer = Trainer(
        model=model,
        args=training_args,
387
388
        train_dataset=dataset["train"] if training_args.do_train else None,
        eval_dataset=dataset["validation"] if training_args.do_eval else None,
389
        compute_metrics=compute_metrics,
390
        tokenizer=image_processor,
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
        data_collator=collate_fn,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()
        trainer.log_metrics("train", train_result.metrics)
        trainer.save_metrics("train", train_result.metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        metrics = trainer.evaluate()
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Write model card and (optionally) push to hub
    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "tasks": "image-classification",
        "dataset": data_args.dataset_name,
418
        "tags": ["image-classification", "vision"],
419
420
421
422
423
424
425
426
427
    }
    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)


if __name__ == "__main__":
    main()