test_modeling_tf_common.py 46.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import copy
18
import inspect
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import os
thomwolf's avatar
thomwolf committed
20
import random
Aymeric Augustin's avatar
Aymeric Augustin committed
21
import tempfile
22
import unittest
23
from importlib import import_module
24
from typing import List, Tuple
thomwolf's avatar
thomwolf committed
25

26
27
from transformers import is_tf_available
from transformers.testing_utils import _tf_gpu_memory_limit, is_pt_tf_cross_test, require_tf, slow
28

Aymeric Augustin's avatar
Aymeric Augustin committed
29

30
if is_tf_available():
thomwolf's avatar
thomwolf committed
31
    import numpy as np
32
    import tensorflow as tf
33

34
    from transformers import (
35
36
        TF_MODEL_FOR_CAUSAL_LM_MAPPING,
        TF_MODEL_FOR_MASKED_LM_MAPPING,
37
        TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
38
        TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
39
        TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
40
        TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
41
42
        TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
43
44
45
        TFAdaptiveEmbedding,
        TFSharedEmbeddings,
        tf_top_k_top_p_filtering,
46
    )
47

Julien Chaumond's avatar
Julien Chaumond committed
48
49
50
51
52
53
54
55
56
57
58
59
60
    if _tf_gpu_memory_limit is not None:
        gpus = tf.config.list_physical_devices("GPU")
        for gpu in gpus:
            # Restrict TensorFlow to only allocate x GB of memory on the GPUs
            try:
                tf.config.experimental.set_virtual_device_configuration(
                    gpu, [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)]
                )
                logical_gpus = tf.config.experimental.list_logical_devices("GPU")
                print("Logical GPUs", logical_gpus)
            except RuntimeError as e:
                # Virtual devices must be set before GPUs have been initialized
                print(e)
thomwolf's avatar
thomwolf committed
61

62

thomwolf's avatar
thomwolf committed
63
64
65
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
66
        if "_range" in key or "_std" in key:
thomwolf's avatar
thomwolf committed
67
68
69
70
            setattr(configs_no_init, key, 0.0)
    return configs_no_init


71
72
@require_tf
class TFModelTesterMixin:
73

74
75
    model_tester = None
    all_model_classes = ()
76
    all_generative_model_classes = ()
77
78
    test_resize_embeddings = True
    is_encoder_decoder = False
79

Lysandre Debut's avatar
Lysandre Debut committed
80
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False) -> dict:
81
82
        inputs_dict = copy.deepcopy(inputs_dict)

83
        if model_class in TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
84
            inputs_dict = {
85
86
                k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1))
                if isinstance(v, tf.Tensor) and v.ndim > 0
87
88
89
                else v
                for k, v in inputs_dict.items()
            }
90
91
92

        if return_labels:
            if model_class in TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
93
                inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32)
94
            elif model_class in TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING.values():
95
96
                inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
                inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
97
            elif model_class in TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.values():
98
                inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
99
100
            elif model_class in TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING.values():
                inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
101
102
103
104
105
106
107
108
109
            elif model_class in [
                *TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.values(),
                *TF_MODEL_FOR_CAUSAL_LM_MAPPING.values(),
                *TF_MODEL_FOR_MASKED_LM_MAPPING.values(),
                *TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.values(),
            ]:
                inputs_dict["labels"] = tf.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32
                )
110
111
        return inputs_dict

112
113
    def test_initialization(self):
        pass
114

115
116
    def test_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
117

118
119
        for model_class in self.all_model_classes:
            model = model_class(config)
120
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
121

122
            with tempfile.TemporaryDirectory() as tmpdirname:
123
124
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
125
                after_outputs = model(self._prepare_for_class(inputs_dict, model_class))
126

127
                self.assert_outputs_same(after_outputs, outputs)
128

129
130
131
132
133
134
135
136
137
138
139
140
141
    def test_graph_mode(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            inputs = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            @tf.function
            def run_in_graph_mode():
                return model(inputs)

            outputs = run_in_graph_mode()
            self.assertIsNotNone(outputs)

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.call)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "inputs",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                    "encoder_outputs",
                ]
                self.assertListEqual(arg_names[:5], expected_arg_names)

            else:
                expected_arg_names = ["inputs"]
                self.assertListEqual(arg_names[:1], expected_arg_names)

Julien Plu's avatar
Julien Plu committed
165
166
167
168
169
170
    @slow
    def test_saved_model_with_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True

        for model_class in self.all_model_classes:
Lysandre Debut's avatar
Lysandre Debut committed
171
            class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
Julien Plu's avatar
Julien Plu committed
172
            model = model_class(config)
Lysandre Debut's avatar
Lysandre Debut committed
173
            num_out = len(model(class_inputs_dict))
Julien Plu's avatar
Julien Plu committed
174
            model._saved_model_inputs_spec = None
Lysandre Debut's avatar
Lysandre Debut committed
175
            model._set_save_spec(class_inputs_dict)
Julien Plu's avatar
Julien Plu committed
176
177
178
179

            with tempfile.TemporaryDirectory() as tmpdirname:
                tf.saved_model.save(model, tmpdirname)
                model = tf.keras.models.load_model(tmpdirname)
Lysandre Debut's avatar
Lysandre Debut committed
180
                outputs = model(class_inputs_dict)
181
182
183
184
185
186

                if self.is_encoder_decoder:
                    output = outputs["encoder_hidden_states"] if isinstance(outputs, dict) else outputs[-1]
                else:
                    output = outputs["hidden_states"] if isinstance(outputs, dict) else outputs[-1]

Sylvain Gugger's avatar
Sylvain Gugger committed
187
                hidden_states = [t.numpy() for t in output]
Julien Plu's avatar
Julien Plu committed
188
                self.assertEqual(len(outputs), num_out)
Lysandre Debut's avatar
Lysandre Debut committed
189
190
191
192
                expected_num_layers = getattr(
                    self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
                )
                self.assertEqual(len(hidden_states), expected_num_layers)
Julien Plu's avatar
Julien Plu committed
193
                self.assertListEqual(
Lysandre's avatar
Lysandre committed
194
195
                    list(hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
Julien Plu's avatar
Julien Plu committed
196
197
198
199
200
201
                )

    @slow
    def test_saved_model_with_attentions_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
Lysandre Debut's avatar
Lysandre Debut committed
202
203
204

        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
Julien Plu's avatar
Julien Plu committed
205
206

        for model_class in self.all_model_classes:
Lysandre Debut's avatar
Lysandre Debut committed
207
            class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
Julien Plu's avatar
Julien Plu committed
208
            model = model_class(config)
Lysandre Debut's avatar
Lysandre Debut committed
209
            num_out = len(model(class_inputs_dict))
Julien Plu's avatar
Julien Plu committed
210
            model._saved_model_inputs_spec = None
Lysandre Debut's avatar
Lysandre Debut committed
211
            model._set_save_spec(class_inputs_dict)
Julien Plu's avatar
Julien Plu committed
212
213
214
215

            with tempfile.TemporaryDirectory() as tmpdirname:
                tf.saved_model.save(model, tmpdirname)
                model = tf.keras.models.load_model(tmpdirname)
Lysandre Debut's avatar
Lysandre Debut committed
216
                outputs = model(class_inputs_dict)
217
218
219
220
221
222

                if self.is_encoder_decoder:
                    output = outputs["encoder_attentions"] if isinstance(outputs, dict) else outputs[-1]
                else:
                    output = outputs["attentions"] if isinstance(outputs, dict) else outputs[-1]

Sylvain Gugger's avatar
Sylvain Gugger committed
223
                attentions = [t.numpy() for t in output]
Julien Plu's avatar
Julien Plu committed
224
225
226
227
228
229
230
                self.assertEqual(len(outputs), num_out)
                self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )

231
232
233
234
235
236
237
238
    def test_keras_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        tf_main_layer_classes = set(
            module_member
            for model_class in self.all_model_classes
            for module in (import_module(model_class.__module__),)
            for module_member_name in dir(module)
239
            if module_member_name.endswith("MainLayer")
240
            for module_member in (getattr(module, module_member_name),)
241
242
243
            if isinstance(module_member, type)
            and tf.keras.layers.Layer in module_member.__bases__
            and getattr(module_member, "_keras_serializable", False)
244
245
        )
        for main_layer_class in tf_main_layer_classes:
Julien Plu's avatar
Julien Plu committed
246
247
248
249
            # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter
            if "T5" in main_layer_class.__name__:
                # Take the same values than in TFT5ModelTester for this shared layer
                shared = TFSharedEmbeddings(99, 32, name="shared")
250
                config.use_cache = False
Julien Plu's avatar
Julien Plu committed
251
252
253
                main_layer = main_layer_class(config, embed_tokens=shared)
            else:
                main_layer = main_layer_class(config)
254
255
256
            symbolic_inputs = {
                name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
            }
Julien Plu's avatar
Julien Plu committed
257

258
259
260
261
262
263
            model = tf.keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs))
            outputs = model(inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                filepath = os.path.join(tmpdirname, "keras_model.h5")
                model.save(filepath)
Julien Plu's avatar
Julien Plu committed
264
265
266
267
268
269
270
271
272
273
274
275
                if "T5" in main_layer_class.__name__:
                    model = tf.keras.models.load_model(
                        filepath,
                        custom_objects={
                            main_layer_class.__name__: main_layer_class,
                            "TFSharedEmbeddings": TFSharedEmbeddings,
                        },
                    )
                else:
                    model = tf.keras.models.load_model(
                        filepath, custom_objects={main_layer_class.__name__: main_layer_class}
                    )
276
277
278
279
280
281
                assert isinstance(model, tf.keras.Model)
                after_outputs = model(inputs_dict)
                self.assert_outputs_same(after_outputs, outputs)

    def assert_outputs_same(self, after_outputs, outputs):
        # Make sure we don't have nans
Julien Plu's avatar
Julien Plu committed
282
283
        if isinstance(after_outputs, tf.Tensor):
            out_1 = after_outputs.numpy()
Sylvain Gugger's avatar
Sylvain Gugger committed
284
285
        elif isinstance(after_outputs, dict):
            out_1 = after_outputs[list(after_outputs.keys())[0]]
Julien Plu's avatar
Julien Plu committed
286
287
        else:
            out_1 = after_outputs[0].numpy()
288
        out_2 = outputs[0].numpy()
289
        self.assertEqual(out_1.shape, out_2.shape)
290
291
292
293
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
294

295
    @is_pt_tf_cross_test
296
    def test_pt_tf_model_equivalence(self):
thomwolf's avatar
thomwolf committed
297

298
        import torch
299

300
        import transformers
thomwolf's avatar
thomwolf committed
301

302
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
303

304
        for model_class in self.all_model_classes:
305
            pt_model_class_name = model_class.__name__[2:]  # Skip the "TF" at the beginning
306
            pt_model_class = getattr(transformers, pt_model_class_name)
thomwolf's avatar
thomwolf committed
307

308
            config.output_hidden_states = True
309

310
311
            tf_model = model_class(config)
            pt_model = pt_model_class(config)
thomwolf's avatar
thomwolf committed
312

313
            # Check we can load pt model in tf and vice-versa with model => model functions
314

315
316
317
            tf_model = transformers.load_pytorch_model_in_tf2_model(
                tf_model, pt_model, tf_inputs=self._prepare_for_class(inputs_dict, model_class)
            )
318
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
319

320
321
322
            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
            pt_inputs_dict = dict(
323
324
                (name, torch.from_numpy(key.numpy()).to(torch.long))
                for name, key in self._prepare_for_class(inputs_dict, model_class).items()
325
            )
326
327
328
329
            # need to rename encoder-decoder "inputs" for PyTorch
            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

330
331
            with torch.no_grad():
                pto = pt_model(**pt_inputs_dict)
332
            tfo = tf_model(self._prepare_for_class(inputs_dict, model_class), training=False)
333
334
            tf_hidden_states = tfo[0].numpy()
            pt_hidden_states = pto[0].numpy()
Lysandre's avatar
Lysandre committed
335

336
337
338
339
340
341
342
            tf_nans = np.copy(np.isnan(tf_hidden_states))
            pt_nans = np.copy(np.isnan(pt_hidden_states))

            pt_hidden_states[tf_nans] = 0
            tf_hidden_states[tf_nans] = 0
            pt_hidden_states[pt_nans] = 0
            tf_hidden_states[pt_nans] = 0
Lysandre's avatar
Lysandre committed
343

344
            max_diff = np.amax(np.abs(tf_hidden_states - pt_hidden_states))
345
            # Debug info (remove when fixed)
346
            if max_diff >= 4e-2:
347
348
349
350
351
                print("===")
                print(model_class)
                print(config)
                print(inputs_dict)
                print(pt_inputs_dict)
352
            self.assertLessEqual(max_diff, 4e-2)
353
354

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
355
            with tempfile.TemporaryDirectory() as tmpdirname:
356
357
358
359
360
361
362
363
364
365
366
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)

            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
            pt_inputs_dict = dict(
367
368
                (name, torch.from_numpy(key.numpy()).to(torch.long))
                for name, key in self._prepare_for_class(inputs_dict, model_class).items()
369
            )
370
371
372
373
            # need to rename encoder-decoder "inputs" for PyTorch
            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

374
375
            with torch.no_grad():
                pto = pt_model(**pt_inputs_dict)
376
            tfo = tf_model(self._prepare_for_class(inputs_dict, model_class))
377
378
            tfo = tfo[0].numpy()
            pto = pto[0].numpy()
379
380
381
382
383
384
385
386
            tf_nans = np.copy(np.isnan(tfo))
            pt_nans = np.copy(np.isnan(pto))

            pto[tf_nans] = 0
            tfo[tf_nans] = 0
            pto[pt_nans] = 0
            tfo[pt_nans] = 0

387
            max_diff = np.amax(np.abs(tfo - pto))
sgugger's avatar
sgugger committed
388
            self.assertLessEqual(max_diff, 4e-2)
389

390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
    def test_train_pipeline_custom_model(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        tf_main_layer_classes = set(
            module_member
            for model_class in self.all_model_classes
            for module in (import_module(model_class.__module__),)
            for module_member_name in dir(module)
            if module_member_name.endswith("MainLayer")
            for module_member in (getattr(module, module_member_name),)
            if isinstance(module_member, type)
            and tf.keras.layers.Layer in module_member.__bases__
            and getattr(module_member, "_keras_serializable", False)
        )

        for main_layer_class in tf_main_layer_classes:
            # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter
            if "T5" in main_layer_class.__name__:
                # Take the same values than in TFT5ModelTester for this shared layer
                shared = TFSharedEmbeddings(self.model_tester.vocab_size, self.model_tester.hidden_size, name="shared")
                config.use_cache = False
                main_layer = main_layer_class(config, embed_tokens=shared)
                del inputs_dict["use_cache"]
            else:
                main_layer = main_layer_class(config)

            symbolic_inputs = {
                name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
            }

            if hasattr(self.model_tester, "num_labels"):
                num_labels = self.model_tester.num_labels
            else:
                num_labels = 2

            X = tf.data.Dataset.from_tensor_slices(
                (inputs_dict, np.random.randint(0, num_labels, (self.model_tester.batch_size, 1)))
            ).batch(1)

            hidden_states = main_layer(symbolic_inputs)[0]
            outputs = tf.keras.layers.Dense(num_labels, activation="softmax", name="outputs")(hidden_states)
            model = tf.keras.models.Model(inputs=symbolic_inputs, outputs=[outputs])

            model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["acc"])
            model.fit(X, epochs=1)

            with tempfile.TemporaryDirectory() as tmpdirname:
                filepath = os.path.join(tmpdirname, "keras_model.h5")
                model.save(filepath)
                if "T5" in main_layer_class.__name__:
                    model = tf.keras.models.load_model(
                        filepath,
                        custom_objects={
                            main_layer_class.__name__: main_layer_class,
                            "TFSharedEmbeddings": TFSharedEmbeddings,
                        },
                    )
                else:
                    model = tf.keras.models.load_model(
                        filepath, custom_objects={main_layer_class.__name__: main_layer_class}
                    )
                assert isinstance(model, tf.keras.Model)
                model(inputs_dict)

453
454
455
456
457
458
459
460
    def test_compile_tf_model(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
        metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")

        for model_class in self.all_model_classes:
461
462
463
464
465
            if self.is_encoder_decoder:
                input_ids = {
                    "decoder_input_ids": tf.keras.Input(
                        batch_shape=(2, 2000), name="decoder_input_ids", dtype="int32"
                    ),
466
                    "input_ids": tf.keras.Input(batch_shape=(2, 2000), name="input_ids", dtype="int32"),
467
468
469
470
471
472
                }
            elif model_class in TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
                input_ids = tf.keras.Input(batch_shape=(4, 2, 2000), name="input_ids", dtype="int32")
            else:
                input_ids = tf.keras.Input(batch_shape=(2, 2000), name="input_ids", dtype="int32")

473
474
            # Prepare our model
            model = model_class(config)
475
            model(self._prepare_for_class(inputs_dict, model_class))  # Model must be called before saving.
476
            # Let's load it from the disk to be sure we can use pretrained weights
477
            with tempfile.TemporaryDirectory() as tmpdirname:
478
479
480
481
482
483
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)

            outputs_dict = model(input_ids)
            hidden_states = outputs_dict[0]

484
            # Add a dense layer on top to test integration with other keras modules
485
486
487
488
489
490
491
492
493
494
495
            outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)

            # Compile extended model
            extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs])
            extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

    def test_keyword_and_dict_args(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
496
497
498
            inputs = self._prepare_for_class(inputs_dict, model_class)

            outputs_dict = model(inputs)
499

500
            inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
501
            input_ids = inputs_keywords.pop("input_ids", None)
502
503
504
505
506
507
508
509
            outputs_keywords = model(input_ids, **inputs_keywords)
            output_dict = outputs_dict[0].numpy()
            output_keywords = outputs_keywords[0].numpy()

            self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
510
        config.return_dict = True
511

512
513
514
515
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
        decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
516
517

        for model_class in self.all_model_classes:
518
            inputs_dict["output_attentions"] = True
519
            inputs_dict["use_cache"] = False
520
521
            config.output_hidden_states = False
            model = model_class(config)
522
523
524
525
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
            attentions = [
                t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
            ]
526
527
528
529
530
            self.assertEqual(model.config.output_hidden_states, False)
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
531
            )
532
            out_len = len(outputs)
thomwolf's avatar
thomwolf committed
533

534
535
            if self.is_encoder_decoder:
                self.assertEqual(out_len % 2, 0)
536
                decoder_attentions = outputs.decoder_attentions
537
                self.assertEqual(model.config.output_hidden_states, False)
538
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
539
                self.assertListEqual(
540
541
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
542
                )
thomwolf's avatar
thomwolf committed
543

544
545
            # Check that output attentions can also be changed via the config
            del inputs_dict["output_attentions"]
546
            config.output_attentions = True
547
            model = model_class(config)
548
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
549
550
551
            attentions = [
                t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
            ]
552
553
554
555
556
557
558
559
560
            self.assertEqual(model.config.output_hidden_states, False)
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
            )

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
561
562
            config.output_hidden_states = True
            model = model_class(config)
563
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
564
565
566
            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
            self.assertEqual(model.config.output_hidden_states, True)

567
568
569
            attentions = [
                t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
            ]
570
571
572
573
574
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
            )
575

576
577
578
    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Joseph Liu's avatar
Joseph Liu committed
579
        def check_hidden_states_output(config, inputs_dict, model_class):
580
            model = model_class(config)
581
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
582
            hidden_states = [t.numpy() for t in outputs[-1]]
583
584
585
586
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
587
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
588
589
                list(hidden_states[0].shape[-2:]),
                [self.model_tester.seq_length, self.model_tester.hidden_size],
590
            )
591

Joseph Liu's avatar
Joseph Liu committed
592
593
594
595
596
597
598
599
        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(config, inputs_dict, model_class)

            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True
            check_hidden_states_output(config, inputs_dict, model_class)

600
601
602
603
604
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
605
            assert isinstance(model.get_input_embeddings(), (tf.keras.layers.Layer, TFAdaptiveEmbedding))
606
607
608
609
610
611
612
613
            x = model.get_output_embeddings()
            assert x is None or isinstance(x, tf.keras.layers.Layer)

    def test_determinism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
614
            first, second = (
615
616
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
617
            )
618
619
620
621
622
623
624
            out_1 = first.numpy()
            out_2 = second.numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
    def test_model_outputs_equivalence(self):

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            tuple_output = model(tuple_inputs, return_dict=False, **additional_kwargs)
            dict_output = model(dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

            def recursive_check(tuple_object, dict_object):
                if isinstance(tuple_object, (List, Tuple)):
                    for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                        recursive_check(tuple_iterable_value, dict_iterable_value)
                elif tuple_object is None:
                    return
                else:
                    self.assertTrue(
                        all(tf.equal(tuple_object, dict_object)),
                        msg=f"Tuple and dict output are not equal. Difference: {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}",
                    )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(
                model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
            )

680
681
682
683
684
685
686
    def _get_embeds(self, wte, input_ids):
        # ^^ In our TF models, the input_embeddings can take slightly different forms,
        # so we try a few of them.
        # We used to fall back to just synthetically creating a dummy tensor of ones:
        try:
            x = wte(input_ids, mode="embedding")
        except Exception:
thomwolf's avatar
thomwolf committed
687
            try:
688
                x = wte([input_ids], mode="embedding")
689
            except Exception:
thomwolf's avatar
thomwolf committed
690
                try:
691
                    x = wte([input_ids, None, None, None], mode="embedding")
692
                except Exception:
693
                    if hasattr(self.model_tester, "embedding_size"):
Lysandre's avatar
Lysandre committed
694
695
696
697
                        x = tf.ones(
                            input_ids.shape + [self.model_tester.embedding_size],
                            dtype=tf.dtypes.float32,
                        )
698
                    else:
Lysandre's avatar
Lysandre committed
699
700
701
702
                        x = tf.ones(
                            input_ids.shape + [self.model_tester.hidden_size],
                            dtype=tf.dtypes.float32,
                        )
703
704
705
706
707
708
709
710
        return x

    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

711
712
713
714
715
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
716
                encoder_input_ids = inputs["input_ids"]
717
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
718
                del inputs["input_ids"]
719
720
                inputs.pop("decoder_input_ids", None)

721
            wte = model.get_input_embeddings()
thomwolf's avatar
thomwolf committed
722
            if not self.is_encoder_decoder:
723
                inputs["inputs_embeds"] = self._get_embeds(wte, input_ids)
thomwolf's avatar
thomwolf committed
724
            else:
725
726
                inputs["inputs_embeds"] = self._get_embeds(wte, encoder_input_ids)
                inputs["decoder_inputs_embeds"] = self._get_embeds(wte, decoder_input_ids)
727

728
            model(inputs)
729

730
731
732
733
734
735
736
737
738
739
740
741
742
    def test_resize_token_embeddings(self):
        if not self.test_resize_embeddings:
            return
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        INPUT_SHAPE = [1, 10, config.hidden_size]
        for model_class in self.all_model_classes:
            for size in [config.vocab_size - 10, config.vocab_size + 10, None]:
                # build the embeddings
                model = model_class(config=config)
                emb_old = model.get_input_embeddings()
                emb_old.build(INPUT_SHAPE)
                # reshape the embeddings
                new_embeddings = model._get_resized_embeddings(emb_old, size)
Julien Chaumond's avatar
Julien Chaumond committed
743
                # # check that the resized embeddings size matches the desired size.
744
745
746
747
748
749
750
751
752
753
                assert_size = size if size is not None else config.vocab_size
                self.assertEqual(new_embeddings.shape[0], assert_size)
                # check that weights remain the same after resizing
                emd_old_weights = model._get_word_embeddings(emb_old)
                models_equal = True
                for p1, p2 in zip(emd_old_weights.numpy(), new_embeddings.numpy()):
                    if np.sum(abs(p1 - p2)) > 0:
                        models_equal = False
                self.assertTrue(models_equal)

754
    def test_lm_head_model_random_no_beam_search_generate(self):
755
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
756
        input_ids = inputs_dict["input_ids"] if "input_ids" in inputs_dict else inputs_dict["inputs"]
757

758
        # iterate over all generative models
759
760
761
762
        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
763
                # if bos token id is not defined mobel needs input_ids
764
                with self.assertRaises(AssertionError):
765
                    model.generate(do_sample=True, max_length=5)
766
                # num_return_sequences = 1
767
                self._check_generated_ids(model.generate(input_ids, do_sample=True))
768
            else:
769
                # num_return_sequences = 1
770
                self._check_generated_ids(model.generate(do_sample=True, max_length=5))
771
772

            with self.assertRaises(AssertionError):
773
                # generating multiple sequences when no beam search generation
774
775
776
                # is not allowed as it would always generate the same sequences
                model.generate(input_ids, do_sample=False, num_return_sequences=2)

777
778
            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2))
779
780

            # check bad words tokens language generation
781
782
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
783
            output_tokens = model.generate(
784
                input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2
785
            )
786
            # only count generated tokens
787
788
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))
789

790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
    def test_lm_head_model_random_beam_search_generate(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_ids = inputs_dict["input_ids"] if "input_ids" in inputs_dict else inputs_dict["inputs"]

        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
                # if bos token id is not defined mobel needs input_ids, num_return_sequences = 1
                self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2))
            else:
                # num_return_sequences = 1
                self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2))

            with self.assertRaises(AssertionError):
                # generating more sequences than having beams leads is not possible
                model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)

            # num_return_sequences > 1, sample
Lysandre's avatar
Lysandre committed
809
810
811
812
813
814
815
816
            self._check_generated_ids(
                model.generate(
                    input_ids,
                    do_sample=True,
                    num_beams=2,
                    num_return_sequences=2,
                )
            )
817
818
819
820
821
822
            # num_return_sequences > 1, greedy
            self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2))

            # check bad words tokens language generation
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
823
            output_tokens = model.generate(
824
                input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2
825
            )
826
            # only count generated tokens
827
828
829
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))

830
831
832
833
834
835
836
837
838
839
    def test_loss_computation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            if getattr(model, "compute_loss", None):
                # The number of elements in the loss should be the same as the number of elements in the label
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                added_label = prepared_for_class[list(prepared_for_class.keys() - inputs_dict.keys())[0]]
                loss_size = tf.size(added_label)

840
841
842
843
844
                if model.__class__ in TF_MODEL_FOR_CAUSAL_LM_MAPPING.values():
                    # if loss is causal lm loss, labels are shift, so that one label per batch
                    # is cut
                    loss_size = loss_size - self.model_tester.batch_size

845
846
847
                # Test that model correctly compute the loss with kwargs
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                input_ids = prepared_for_class.pop("input_ids")
848

849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
                loss = model(input_ids, **prepared_for_class)[0]
                self.assertEqual(loss.shape, [loss_size])

                # Test that model correctly compute the loss with a dict
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                loss = model(prepared_for_class)[0]
                self.assertEqual(loss.shape, [loss_size])

                # Test that model correctly compute the loss with a tuple
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)

                # Get keys that were added with the _prepare_for_class function
                label_keys = prepared_for_class.keys() - inputs_dict.keys()
                signature = inspect.getfullargspec(model.call)[0]

                # Create a dictionary holding the location of the tensors in the tuple
                tuple_index_mapping = {1: "input_ids"}
                for label_key in label_keys:
                    label_key_index = signature.index(label_key)
                    tuple_index_mapping[label_key_index] = label_key
                sorted_tuple_index_mapping = sorted(tuple_index_mapping.items())

                # Initialize a list with None, update the values and convert to a tuple
                list_input = [None] * sorted_tuple_index_mapping[-1][0]
                for index, value in sorted_tuple_index_mapping:
                    list_input[index - 1] = prepared_for_class[value]
                tuple_input = tuple(list_input)

                # Send to model
                loss = model(tuple_input)[0]
                self.assertEqual(loss.shape, [loss_size])

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
    def _generate_random_bad_tokens(self, num_bad_tokens, model):
        # special tokens cannot be bad tokens
        special_tokens = []
        if model.config.bos_token_id is not None:
            special_tokens.append(model.config.bos_token_id)
        if model.config.pad_token_id is not None:
            special_tokens.append(model.config.pad_token_id)
        if model.config.eos_token_id is not None:
            special_tokens.append(model.config.eos_token_id)

        # create random bad tokens that are not special tokens
        bad_tokens = []
        while len(bad_tokens) < num_bad_tokens:
            token = tf.squeeze(ids_tensor((1, 1), self.model_tester.vocab_size), 0).numpy()[0]
            if token not in special_tokens:
                bad_tokens.append(token)
        return bad_tokens

899
    def _check_generated_ids(self, output_ids):
900
901
902
903
        for token_id in output_ids[0].numpy().tolist():
            self.assertGreaterEqual(token_id, 0)
            self.assertLess(token_id, self.model_tester.vocab_size)

904
905
906
907
908
909
910
911
912
913
914
915
    def _check_match_tokens(self, generated_ids, bad_words_ids):
        # for all bad word tokens
        for bad_word_ids in bad_words_ids:
            # for all slices in batch
            for generated_ids_slice in generated_ids:
                # for all word idx
                for i in range(len(bad_word_ids), len(generated_ids_slice)):
                    # if tokens match
                    if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
                        return True
        return False

thomwolf's avatar
thomwolf committed
916

thomwolf's avatar
thomwolf committed
917
def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None):
thomwolf's avatar
thomwolf committed
918
919
920
921
922
923
924
925
926
927
928
929
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))

930
    output = tf.constant(values, shape=shape, dtype=dtype if dtype is not None else tf.int32)
thomwolf's avatar
thomwolf committed
931
932

    return output
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010


@require_tf
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p_filtering function behaves as expected
    def test_top_k_top_p_filtering(self):
        logits = tf.convert_to_tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,  # 5th highest value; idx. 9
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 5 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,  # 5th highest value; idx. 18
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 5 highest values <= 0.6
            ],
            dtype=tf.float32,
        )

        non_inf_expected_idx = tf.convert_to_tensor(
Lysandre's avatar
Lysandre committed
1011
1012
            [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]],
            dtype=tf.int32,
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
        )  # expected non filtered idx as noted above

        non_inf_expected_output = tf.convert_to_tensor(
            [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023],
            dtype=tf.float32,
        )  # expected non filtered values as noted above

        output = tf_top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)

        non_inf_output = output[output != -float("inf")]
        non_inf_idx = tf.cast(
Lysandre's avatar
Lysandre committed
1024
1025
            tf.where(tf.not_equal(output, tf.constant(-float("inf"), dtype=tf.float32))),
            dtype=tf.int32,
1026
1027
1028
1029
        )

        tf.debugging.assert_near(non_inf_output, non_inf_expected_output, rtol=1e-12)
        tf.debugging.assert_equal(non_inf_idx, non_inf_expected_idx)