test_modeling_xlm.py 14.7 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

19
from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_common import ModelTesterMixin, ids_tensor
Aymeric Augustin's avatar
Aymeric Augustin committed
24
25


26
if is_torch_available():
27
    import torch
28
29
30
31
    from transformers import (
        XLMConfig,
        XLMModel,
        XLMWithLMHeadModel,
32
        XLMForTokenClassification,
33
34
35
        XLMForQuestionAnswering,
        XLMForSequenceClassification,
        XLMForQuestionAnsweringSimple,
36
        XLMForMultipleChoice,
37
    )
38
    from transformers.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
39
40


41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
class XLMModelTester:
    def __init__(
        self, parent,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_lengths = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.gelu_activation = True
        self.sinusoidal_embeddings = False
        self.causal = False
        self.asm = False
        self.n_langs = 2
        self.vocab_size = 99
        self.n_special = 0
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
67
        self.num_labels = 2
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
        self.num_choices = 4
        self.summary_type = "last"
        self.use_proj = True
        self.scope = None
        self.bos_token_id = 0

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        input_mask = ids_tensor([self.batch_size, self.seq_length], 2).float()

        input_lengths = None
        if self.use_input_lengths:
            input_lengths = (
                ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2
            )  # small variation of seq_length

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)

        sequence_labels = None
        token_labels = None
        is_impossible_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            is_impossible_labels = ids_tensor([self.batch_size], 2).float()
95
            choice_labels = ids_tensor([self.batch_size], self.num_choices)
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

        config = XLMConfig(
            vocab_size=self.vocab_size,
            n_special=self.n_special,
            emb_dim=self.hidden_size,
            n_layers=self.num_hidden_layers,
            n_heads=self.num_attention_heads,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            gelu_activation=self.gelu_activation,
            sinusoidal_embeddings=self.sinusoidal_embeddings,
            asm=self.asm,
            causal=self.causal,
            n_langs=self.n_langs,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
            summary_type=self.summary_type,
            use_proj=self.use_proj,
114
            num_labels=self.num_labels,
115
            bos_token_id=self.bos_token_id,
Sylvain Gugger's avatar
Sylvain Gugger committed
116
            return_dict=True,
117
        )
thomwolf's avatar
thomwolf committed
118

119
        return (
120
121
122
123
124
125
126
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
127
            choice_labels,
128
            input_mask,
129
130
131
132
133
134
135
136
137
138
139
140
141
142
        )

    def check_loss_output(self, result):
        self.parent.assertListEqual(list(result["loss"].size()), [])

    def create_and_check_xlm_model(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
143
        choice_labels,
144
145
146
147
148
        input_mask,
    ):
        model = XLMModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
149
150
151
        result = model(input_ids, lengths=input_lengths, langs=token_type_ids)
        result = model(input_ids, langs=token_type_ids)
        result = model(input_ids)
152
        self.parent.assertListEqual(
Sylvain Gugger's avatar
Sylvain Gugger committed
153
            list(result["last_hidden_state"].size()), [self.batch_size, self.seq_length, self.hidden_size]
154
155
156
157
158
159
160
161
162
163
164
        )

    def create_and_check_xlm_lm_head(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
165
        choice_labels,
166
167
168
169
170
171
        input_mask,
    ):
        model = XLMWithLMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
172
        result = model(input_ids, token_type_ids=token_type_ids, labels=token_labels)
173
174
175
176
177
178
179
180
181
182
183
184
        self.parent.assertListEqual(list(result["loss"].size()), [])
        self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.seq_length, self.vocab_size])

    def create_and_check_xlm_simple_qa(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
185
        choice_labels,
186
187
188
189
190
191
192
193
194
        input_mask,
    ):
        model = XLMForQuestionAnsweringSimple(config)
        model.to(torch_device)
        model.eval()

        outputs = model(input_ids)

        outputs = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
Sylvain Gugger's avatar
Sylvain Gugger committed
195
        result = outputs
196
197
198
199
200
201
202
203
204
205
206
207
208
        self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
        self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
        self.check_loss_output(result)

    def create_and_check_xlm_qa(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
209
        choice_labels,
210
211
212
213
214
215
        input_mask,
    ):
        model = XLMForQuestionAnswering(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
216
        result = model(input_ids)
217

Sylvain Gugger's avatar
Sylvain Gugger committed
218
        result_with_labels = model(
219
            input_ids,
220
221
222
223
224
225
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
            p_mask=input_mask,
        )
thomwolf's avatar
thomwolf committed
226

Sylvain Gugger's avatar
Sylvain Gugger committed
227
        result_with_labels = model(
228
229
230
231
232
233
            input_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
        )
thomwolf's avatar
thomwolf committed
234

Sylvain Gugger's avatar
Sylvain Gugger committed
235
        (total_loss,) = result_with_labels.to_tuple()
thomwolf's avatar
thomwolf committed
236

Sylvain Gugger's avatar
Sylvain Gugger committed
237
        result_with_labels = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
238

Sylvain Gugger's avatar
Sylvain Gugger committed
239
        (total_loss,) = result_with_labels.to_tuple()
240

Sylvain Gugger's avatar
Sylvain Gugger committed
241
        self.parent.assertListEqual(list(result_with_labels["loss"].size()), [])
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
        self.parent.assertListEqual(
            list(result["start_top_log_probs"].size()), [self.batch_size, model.config.start_n_top]
        )
        self.parent.assertListEqual(
            list(result["start_top_index"].size()), [self.batch_size, model.config.start_n_top]
        )
        self.parent.assertListEqual(
            list(result["end_top_log_probs"].size()),
            [self.batch_size, model.config.start_n_top * model.config.end_n_top],
        )
        self.parent.assertListEqual(
            list(result["end_top_index"].size()), [self.batch_size, model.config.start_n_top * model.config.end_n_top],
        )
        self.parent.assertListEqual(list(result["cls_logits"].size()), [self.batch_size])

    def create_and_check_xlm_sequence_classif(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
266
        choice_labels,
267
268
269
270
271
272
        input_mask,
    ):
        model = XLMForSequenceClassification(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
273
274
        result = model(input_ids)
        result = model(input_ids, labels=sequence_labels)
275
276
277
        self.parent.assertListEqual(list(result["loss"].size()), [])
        self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.type_sequence_label_size])

278
    def create_and_check_xlm_token_classif(
279
280
281
282
283
284
285
286
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
287
        choice_labels,
288
289
290
291
292
293
294
        input_mask,
    ):
        config.num_labels = self.num_labels
        model = XLMForTokenClassification(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
295
        result = model(input_ids, attention_mask=input_mask, labels=token_labels)
296
297
298
        self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.seq_length, self.num_labels])
        self.check_loss_output(result)

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
    def create_and_check_xlm_for_multiple_choice(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
        choice_labels,
        input_mask,
    ):
        config.num_choices = self.num_choices
        model = XLMForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
318
        result = model(
319
320
321
322
323
324
325
326
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
        self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_choices])
        self.check_loss_output(result)

327
328
329
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
330
331
332
333
334
335
336
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
337
            choice_labels,
338
            input_mask,
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths}
        return config, inputs_dict


@require_torch
class XLMModelTest(ModelTesterMixin, unittest.TestCase):

    all_model_classes = (
        (
            XLMModel,
            XLMWithLMHeadModel,
            XLMForQuestionAnswering,
            XLMForSequenceClassification,
            XLMForQuestionAnsweringSimple,
354
            XLMForTokenClassification,
355
            XLMForMultipleChoice,
356
357
358
359
360
361
362
        )
        if is_torch_available()
        else ()
    )
    all_generative_model_classes = (
        (XLMWithLMHeadModel,) if is_torch_available() else ()
    )  # TODO (PVP): Check other models whether language generation is also applicable
thomwolf's avatar
thomwolf committed
363

thomwolf's avatar
thomwolf committed
364
    def setUp(self):
365
        self.model_tester = XLMModelTester(self)
thomwolf's avatar
thomwolf committed
366
        self.config_tester = ConfigTester(self, config_class=XLMConfig, emb_dim=37)
thomwolf's avatar
thomwolf committed
367
368

    def test_config(self):
thomwolf's avatar
thomwolf committed
369
        self.config_tester.run_common_tests()
thomwolf's avatar
thomwolf committed
370

thomwolf's avatar
thomwolf committed
371
372
373
    def test_xlm_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
374

thomwolf's avatar
thomwolf committed
375
376
377
    def test_xlm_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_lm_head(*config_and_inputs)
thomwolf's avatar
thomwolf committed
378

379
380
381
382
    def test_xlm_simple_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_simple_qa(*config_and_inputs)

thomwolf's avatar
thomwolf committed
383
384
385
    def test_xlm_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_qa(*config_and_inputs)
thomwolf's avatar
thomwolf committed
386

thomwolf's avatar
thomwolf committed
387
388
389
    def test_xlm_sequence_classif(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_sequence_classif(*config_and_inputs)
thomwolf's avatar
thomwolf committed
390

391
    def test_xlm_token_classif(self):
392
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
393
        self.model_tester.create_and_check_xlm_token_classif(*config_and_inputs)
394

395
396
397
398
    def test_xlm_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_for_multiple_choice(*config_and_inputs)

399
    @slow
thomwolf's avatar
thomwolf committed
400
    def test_model_from_pretrained(self):
401
        for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
402
            model = XLMModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
403
            self.assertIsNotNone(model)
404
405


406
@require_torch
407
408
409
410
class XLMModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_xlm_mlm_en_2048(self):
        model = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048")
411
        model.to(torch_device)
412
        input_ids = torch.tensor([[14, 447]], dtype=torch.long, device=torch_device)  # the president
413
414
        expected_output_ids = [
            14,
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
        ]  # the president the president the president the president the president the president the president the president the president the president
        # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
        output_ids = model.generate(input_ids, do_sample=False)
437
        self.assertListEqual(output_ids[0].cpu().numpy().tolist(), expected_output_ids)