modeling_xlnet.py 60 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch XLNet model.
"""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
from __future__ import absolute_import, division, print_function, unicode_literals

import copy
import json
import logging
import math
import os
import sys
from io import open

import torch
from torch import nn
thomwolf's avatar
thomwolf committed
32
from torch.nn import functional as F
33
from torch.nn import CrossEntropyLoss, MSELoss
thomwolf's avatar
thomwolf committed
34

35
from .file_utils import cached_path
36
from .model_utils import CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel
37

thomwolf's avatar
thomwolf committed
38
39
40
41
42
43
44
45
46
47

logger = logging.getLogger(__name__)

PRETRAINED_MODEL_ARCHIVE_MAP = {
    'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-pytorch_model.bin",
}
PRETRAINED_CONFIG_ARCHIVE_MAP = {
    'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-config.json",
}

thomwolf's avatar
thomwolf committed
48

49
def build_tf_xlnet_to_pytorch_map(model, config, tf_weights=None):
thomwolf's avatar
thomwolf committed
50
51
52
53
54
55
56
57
    """ A map of modules from TF to PyTorch.
        I use a map to keep the PyTorch model as
        identical to the original PyTorch model as possible.
    """

    tf_to_pt_map = {}

    if hasattr(model, 'transformer'):
58
59
60
        if hasattr(model, 'lm_loss'):
            # We will load also the output bias
            tf_to_pt_map['model/lm_loss/bias'] = model.lm_loss.bias
61
        if hasattr(model, 'sequence_summary') and 'model/sequnece_summary/summary/kernel' in tf_weights:
62
63
64
            # We will load also the sequence summary
            tf_to_pt_map['model/sequnece_summary/summary/kernel'] = model.sequence_summary.summary.weight
            tf_to_pt_map['model/sequnece_summary/summary/bias'] = model.sequence_summary.summary.bias
thomwolf's avatar
thomwolf committed
65
66
        if hasattr(model, 'logits_proj') and config.finetuning_task is not None \
                and 'model/regression_{}/logit/kernel'.format(config.finetuning_task) in tf_weights:
67
68
            tf_to_pt_map['model/regression_{}/logit/kernel'.format(config.finetuning_task)] = model.logits_proj.weight
            tf_to_pt_map['model/regression_{}/logit/bias'.format(config.finetuning_task)] = model.logits_proj.bias
69

thomwolf's avatar
thomwolf committed
70
71
72
73
74
        # Now load the rest of the transformer
        model = model.transformer

    # Embeddings and output
    tf_to_pt_map.update({'model/transformer/word_embedding/lookup_table': model.word_embedding.weight,
75
                         'model/transformer/mask_emb/mask_emb': model.mask_emb})
thomwolf's avatar
thomwolf committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

    # Transformer blocks
    for i, b in enumerate(model.layer):
        layer_str = "model/transformer/layer_%d/" % i
        tf_to_pt_map.update({
            layer_str + "rel_attn/LayerNorm/gamma": b.rel_attn.layer_norm.weight,
            layer_str + "rel_attn/LayerNorm/beta": b.rel_attn.layer_norm.bias,
            layer_str + "rel_attn/o/kernel": b.rel_attn.o,
            layer_str + "rel_attn/q/kernel": b.rel_attn.q,
            layer_str + "rel_attn/k/kernel": b.rel_attn.k,
            layer_str + "rel_attn/r/kernel": b.rel_attn.r,
            layer_str + "rel_attn/v/kernel": b.rel_attn.v,
            layer_str + "ff/LayerNorm/gamma": b.ff.layer_norm.weight,
            layer_str + "ff/LayerNorm/beta": b.ff.layer_norm.bias,
            layer_str + "ff/layer_1/kernel": b.ff.layer_1.weight,
            layer_str + "ff/layer_1/bias": b.ff.layer_1.bias,
            layer_str + "ff/layer_2/kernel": b.ff.layer_2.weight,
            layer_str + "ff/layer_2/bias": b.ff.layer_2.bias,
        })

    # Relative positioning biases
    if config.untie_r:
        r_r_list = []
        r_w_list = []
        r_s_list = []
        seg_embed_list = []
        for b in model.layer:
            r_r_list.append(b.rel_attn.r_r_bias)
            r_w_list.append(b.rel_attn.r_w_bias)
            r_s_list.append(b.rel_attn.r_s_bias)
            seg_embed_list.append(b.rel_attn.seg_embed)
    else:
        r_r_list = [model.r_r_bias]
        r_w_list = [model.r_w_bias]
        r_s_list = [model.r_s_bias]
        seg_embed_list = [model.seg_embed]
    tf_to_pt_map.update({
        'model/transformer/r_r_bias': r_r_list,
        'model/transformer/r_w_bias': r_w_list,
        'model/transformer/r_s_bias': r_s_list,
        'model/transformer/seg_embed': seg_embed_list})
    return tf_to_pt_map

119
def load_tf_weights_in_xlnet(model, config, tf_path):
thomwolf's avatar
thomwolf committed
120
121
122
123
124
125
126
127
128
129
130
    """ Load tf checkpoints in a pytorch model
    """
    try:
        import numpy as np
        import tensorflow as tf
    except ImportError:
        print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
thomwolf's avatar
thomwolf committed
131
    tf_weights = {}
thomwolf's avatar
thomwolf committed
132
133
134
    for name, shape in init_vars:
        print("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
thomwolf's avatar
thomwolf committed
135
        tf_weights[name] = array
thomwolf's avatar
thomwolf committed
136

137
    # Build TF to PyTorch weights loading map
138
    tf_to_pt_map = build_tf_xlnet_to_pytorch_map(model, config, tf_weights)
139

thomwolf's avatar
thomwolf committed
140
141
    for name, pointer in tf_to_pt_map.items():
        print("Importing {}".format(name))
142
143
144
        if name not in tf_weights:
            print("{} not in tf pre-trained weights, skipping".format(name))
            continue
thomwolf's avatar
thomwolf committed
145
        array = tf_weights[name]
thomwolf's avatar
thomwolf committed
146
147
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
148
        if 'kernel' in name and ('ff' in name or 'summary' in name or 'logit' in name):
thomwolf's avatar
thomwolf committed
149
            print("Transposing")
thomwolf's avatar
thomwolf committed
150
            array = np.transpose(array)
thomwolf's avatar
thomwolf committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
        if isinstance(pointer, list):
            # Here we will split the TF weigths
            assert len(pointer) == array.shape[0]
            for i, p_i in enumerate(pointer):
                arr_i = array[i, ...]
                try:
                    assert p_i.shape == arr_i.shape
                except AssertionError as e:
                    e.args += (p_i.shape, arr_i.shape)
                    raise
                print("Initialize PyTorch weight {} for layer {}".format(name, i))
                p_i.data = torch.from_numpy(arr_i)
        else:
            try:
                assert pointer.shape == array.shape
            except AssertionError as e:
                e.args += (pointer.shape, array.shape)
                raise
            print("Initialize PyTorch weight {}".format(name))
            pointer.data = torch.from_numpy(array)
        tf_weights.pop(name, None)
        tf_weights.pop(name + '/Adam', None)
        tf_weights.pop(name + '/Adam_1', None)

    print("Weights not copied to PyTorch model: {}".format(', '.join(tf_weights.keys())))
thomwolf's avatar
thomwolf committed
176
177
178
179
    return model


def gelu(x):
180
181
    """ Implementation of the gelu activation function.
        XLNet is using OpenAI GPT's gelu (not exactly the same as BERT)
thomwolf's avatar
thomwolf committed
182
183
        Also see https://arxiv.org/abs/1606.08415
    """
184
185
    cdf = 0.5 * (1.0 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
    return x * cdf
thomwolf's avatar
thomwolf committed
186
187
188
189
190
191
192
193
194


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}


195
class XLNetConfig(PretrainedConfig):
thomwolf's avatar
thomwolf committed
196
197
    """Configuration class to store the configuration of a `XLNetModel`.
    """
198
199
    pretrained_config_archive_map = PRETRAINED_CONFIG_ARCHIVE_MAP

thomwolf's avatar
thomwolf committed
200
201
    def __init__(self,
                 vocab_size_or_config_json_file,
thomwolf's avatar
thomwolf committed
202
203
204
205
                 d_model=1024,
                 n_layer=24,
                 n_head=16,
                 d_inner=4096,
thomwolf's avatar
thomwolf committed
206
207
                 ff_activation="gelu",
                 untie_r=True,
thomwolf's avatar
thomwolf committed
208
                 attn_type="bi",
thomwolf's avatar
thomwolf committed
209
210
211

                 max_position_embeddings=512,
                 initializer_range=0.02,
thomwolf's avatar
thomwolf committed
212
213
214
215
216
217
218
219
220
221
222
                 layer_norm_eps=1e-12,

                 dropout=0.1,
                 dropatt=0.1,
                 init="normal",
                 init_range=0.1,
                 init_std=0.02,
                 mem_len=None,
                 reuse_len=None,
                 bi_data=False,
                 clamp_len=-1,
223
224
                 same_length=False,
                 finetuning_task=None):
thomwolf's avatar
thomwolf committed
225
226
227
228
229
230
231
232
233
234
235
236
237
        """Constructs XLNetConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `XLNetModel`.
            d_model: Size of the encoder layers and the pooler layer.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            d_inner: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            ff_activation: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            untie_r: untie relative position biases
thomwolf's avatar
thomwolf committed
238
            attn_type: 'bi' for XLNet, 'uni' for Transformer-XL
thomwolf's avatar
thomwolf committed
239
240
241
242
243
244
245
246
247
248
249

            dropout: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            dropatt: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
            layer_norm_eps: The epsilon used by LayerNorm.
thomwolf's avatar
thomwolf committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

            dropout: float, dropout rate.
            dropatt: float, dropout rate on attention probabilities.
            init: str, the initialization scheme, either "normal" or "uniform".
            init_range: float, initialize the parameters with a uniform distribution
                in [-init_range, init_range]. Only effective when init="uniform".
            init_std: float, initialize the parameters with a normal distribution
                with mean 0 and stddev init_std. Only effective when init="normal".
            mem_len: int, the number of tokens to cache.
            reuse_len: int, the number of tokens in the currect batch to be cached
                and reused in the future.
            bi_data: bool, whether to use bidirectional input pipeline.
                Usually set to True during pretraining and False during finetuning.
            clamp_len: int, clamp all relative distances larger than clamp_len.
                -1 means no clamping.
            same_length: bool, whether to use the same attention length for each token.
266
            finetuning_task: name of the glue task on which the model was fine-tuned if any
thomwolf's avatar
thomwolf committed
267
268
269
270
271
272
273
274
        """
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
thomwolf's avatar
thomwolf committed
275
            self.n_token = vocab_size_or_config_json_file
thomwolf's avatar
thomwolf committed
276
277
278
            self.d_model = d_model
            self.n_layer = n_layer
            self.n_head = n_head
thomwolf's avatar
thomwolf committed
279
280
            assert d_model % n_head == 0
            self.d_head = d_model // n_head
thomwolf's avatar
thomwolf committed
281
282
283
            self.ff_activation = ff_activation
            self.d_inner = d_inner
            self.untie_r = untie_r
thomwolf's avatar
thomwolf committed
284
            self.attn_type = attn_type
thomwolf's avatar
thomwolf committed
285

thomwolf's avatar
thomwolf committed
286
287
288
            self.max_position_embeddings = max_position_embeddings
            self.initializer_range = initializer_range
            self.layer_norm_eps = layer_norm_eps
thomwolf's avatar
thomwolf committed
289
290
291
292
293
294
295
296
297
298
299

            self.init = init
            self.init_range = init_range
            self.init_std = init_std
            self.dropout = dropout
            self.dropatt = dropatt
            self.mem_len = mem_len
            self.reuse_len = reuse_len
            self.bi_data = bi_data
            self.clamp_len = clamp_len
            self.same_length = same_length
300
            self.finetuning_task = finetuning_task
thomwolf's avatar
thomwolf committed
301
302
303
304
305
306
307
308
309
310
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")


try:
    from apex.normalization.fused_layer_norm import FusedLayerNorm as XLNetLayerNorm
except ImportError:
    logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
    class XLNetLayerNorm(nn.Module):
thomwolf's avatar
thomwolf committed
311
        def __init__(self, d_model, eps=1e-12):
thomwolf's avatar
thomwolf committed
312
313
314
            """Construct a layernorm module in the TF style (epsilon inside the square root).
            """
            super(XLNetLayerNorm, self).__init__()
thomwolf's avatar
thomwolf committed
315
316
            self.weight = nn.Parameter(torch.ones(d_model))
            self.bias = nn.Parameter(torch.zeros(d_model))
thomwolf's avatar
thomwolf committed
317
318
319
320
321
322
323
324
            self.variance_epsilon = eps

        def forward(self, x):
            u = x.mean(-1, keepdim=True)
            s = (x - u).pow(2).mean(-1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.variance_epsilon)
            return self.weight * x + self.bias

thomwolf's avatar
thomwolf committed
325
326
327
328
class XLNetRelativeAttention(nn.Module):
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
        super(XLNetRelativeAttention, self).__init__()
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
329
        if config.d_model % config.n_head != 0:
thomwolf's avatar
thomwolf committed
330
331
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
thomwolf's avatar
thomwolf committed
332
                "heads (%d)" % (config.d_model, config.n_head))
thomwolf's avatar
thomwolf committed
333
334
335
336
        self.output_attentions = output_attentions
        self.keep_multihead_output = keep_multihead_output
        self.multihead_output = None

thomwolf's avatar
thomwolf committed
337
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
338
339
340
341
342
343
344
345
346
347
348
349
350
        self.d_head = config.d_head
        self.d_model = config.d_model
        self.scale = 1 / (config.d_head ** 0.5)

        self.q = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.k = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.v = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.o = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.r = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))

        self.r_r_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
        self.r_s_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
        self.r_w_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
351
        self.seg_embed = nn.Parameter(torch.Tensor(2, self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
352

thomwolf's avatar
thomwolf committed
353
        self.layer_norm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
354
355
356
357
358
        self.dropout = nn.Dropout(config.dropout)

    def prune_heads(self, heads):
        raise NotImplementedError

thomwolf's avatar
thomwolf committed
359
360
361
362
363
364
365
366
367
368
369
370
    @staticmethod
    def rel_shift(x, klen=-1):
        """perform relative shift to form the relative attention score."""
        x_size = x.shape

        x = x.reshape(x_size[1], x_size[0], x_size[2], x_size[3])
        x = x[1:, ...]
        x = x.reshape(x_size[0], x_size[1] - 1, x_size[2], x_size[3])
        x = x[:, 0:klen, :, :]

        return x

thomwolf's avatar
thomwolf committed
371
372
373
374
375
376
377
378
    def rel_attn_core(self, q_head, k_head_h, v_head_h, k_head_r, seg_mat=None, attn_mask=None):
        """Core relative positional attention operations."""

        # content based attention score
        ac = torch.einsum('ibnd,jbnd->ijbn', q_head + self.r_w_bias, k_head_h)

        # position based attention score
        bd = torch.einsum('ibnd,jbnd->ijbn', q_head + self.r_r_bias, k_head_r)
thomwolf's avatar
thomwolf committed
379
        bd = self.rel_shift(bd, klen=ac.shape[1])
thomwolf's avatar
thomwolf committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

        # segment based attention score
        if seg_mat is None:
            ef = 0
        else:
            ef = torch.einsum('ibnd,snd->ibns', q_head + self.r_s_bias, self.seg_embed)
            ef = torch.einsum('ijbs,ibns->ijbn', seg_mat, ef)

        # merge attention scores and perform masking
        attn_score = (ac + bd + ef) * self.scale
        if attn_mask is not None:
            # attn_score = attn_score * (1 - attn_mask) - 1e30 * attn_mask
            attn_score = attn_score - 1e30 * attn_mask

        # attention probability
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropout(attn_prob)

        # attention output
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', attn_prob, v_head_h)

        return attn_vec

    def post_attention(self, h, attn_vec, residual=True):
        """Post-attention processing."""
        # post-attention projection (back to `d_model`)
        attn_out = torch.einsum('ibnd,hnd->ibh', attn_vec, self.o)

        attn_out = self.dropout(attn_out)
        if residual:
            attn_out = attn_out + h
thomwolf's avatar
thomwolf committed
411
        output = self.layer_norm(attn_out)
thomwolf's avatar
thomwolf committed
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

        return output

    def forward(self, h, g,
                      attn_mask_h, attn_mask_g,
                      r, seg_mat,
                      mems=None, target_mapping=None, head_mask=None):
        if g is not None:
            ###### Two-stream attention with relative positional encoding.
            # content based attention score
            if mems is not None and mems.dim() > 1:
                cat = torch.cat([mems, h], dim=0)
            else:
                cat = h

            # content-based key head
            k_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.k)

            # content-based value head
            v_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.v)

            # position-based key head
            k_head_r = torch.einsum('ibh,hnd->ibnd', r, self.r)

            ##### h-stream
            # content-stream query head
            q_head_h = torch.einsum('ibh,hnd->ibnd', h, self.q)

            # core attention ops
            attn_vec_h = self.rel_attn_core(
                q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h)

            # post processing
            output_h = self.post_attention(h, attn_vec_h)

            ##### g-stream
            # query-stream query head
            q_head_g = torch.einsum('ibh,hnd->ibnd', g, self.q)

            # core attention ops
            if target_mapping is not None:
                q_head_g = torch.einsum('mbnd,mlb->lbnd', q_head_g, target_mapping)
                attn_vec_g = self.rel_attn_core(
                    q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g)
                attn_vec_g = torch.einsum('lbnd,mlb->mbnd', attn_vec_g, target_mapping)
            else:
                attn_vec_g = self.rel_attn_core(
                    q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g)

            # post processing
            output_g = self.post_attention(g, attn_vec_g)
        else:
            ###### Multi-head attention with relative positional encoding
            if mems is not None and mems.dim() > 1:
                cat = torch.cat([mems, h], dim=0)
            else:
                cat = h

            # content heads
            q_head_h = torch.einsum('ibh,hnd->ibnd', h, self.q)
            k_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.k)
            v_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.v)

            # positional heads
            k_head_r = torch.einsum('ibh,hnd->ibnd', r, self.r)

            # core attention ops
            attn_vec = self.rel_attn_core(
                q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h)

            # post processing
thomwolf's avatar
thomwolf committed
483
484
            output_h = self.post_attention(h, attn_vec)
            output_g = None
thomwolf's avatar
thomwolf committed
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503


        # Mask heads if we want to
        # if head_mask is not None:
        #     attention_probs = attention_probs * head_mask

        # context_layer = torch.matmul(attention_probs, value_layer)
        # if self.keep_multihead_output:
        #     self.multihead_output = context_layer
        #     self.multihead_output.retain_grad()

        # context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        # new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        # context_layer = context_layer.view(*new_context_layer_shape)

        # if self.output_attentions:
        #     attentions, self_output = self_output
        # if self.output_attentions:
        #     return attentions, attention_output
thomwolf's avatar
thomwolf committed
504
        return output_h, output_g
thomwolf's avatar
thomwolf committed
505
506
507
508

class XLNetFeedForward(nn.Module):
    def __init__(self, config):
        super(XLNetFeedForward, self).__init__()
thomwolf's avatar
thomwolf committed
509
        self.layer_norm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
510
511
512
513
514
515
516
517
        self.layer_1 = nn.Linear(config.d_model, config.d_inner)
        self.layer_2 = nn.Linear(config.d_inner, config.d_model)
        self.dropout = nn.Dropout(config.dropout)
        if isinstance(config.ff_activation, str) or (sys.version_info[0] == 2 and isinstance(config.ff_activation, unicode)):
            self.activation_function = ACT2FN[config.ff_activation]
        else:
            self.activation_function = config.ff_activation

thomwolf's avatar
thomwolf committed
518
519
520
521
522
523
524
    def forward(self, inp):
        output = inp
        output = self.layer_1(output)
        output = self.activation_function(output)
        output = self.dropout(output)
        output = self.layer_2(output)
        output = self.dropout(output)
thomwolf's avatar
thomwolf committed
525
        output = self.layer_norm(output + inp)
thomwolf's avatar
thomwolf committed
526
        return output
thomwolf's avatar
thomwolf committed
527
528
529
530
531
532
533
534
535
536
537
538

class XLNetLayer(nn.Module):
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
        super(XLNetLayer, self).__init__()
        self.output_attentions = output_attentions
        self.rel_attn = XLNetRelativeAttention(config, output_attentions=output_attentions,
                                               keep_multihead_output=keep_multihead_output)
        self.ff = XLNetFeedForward(config)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, output_h, output_g,
                attn_mask_h, attn_mask_g,
thomwolf's avatar
thomwolf committed
539
540
                r, seg_mat,
                mems=None, target_mapping=None, head_mask=None):
thomwolf's avatar
thomwolf committed
541
542
543
544
        output_h, output_g = self.rel_attn(output_h, output_g,
                                           attn_mask_h, attn_mask_g,
                                           r, seg_mat,
                                           mems=mems, target_mapping=target_mapping, head_mask=head_mask)
thomwolf's avatar
thomwolf committed
545
        if output_g is not None:
thomwolf's avatar
thomwolf committed
546
547
548
549
550
551
552
            output_g = self.ff(output_g)
        output_h = self.ff(output_h)

        # if self.output_attentions:
        #     return attentions, layer_output
        return output_h, output_g

553
554

class XLNetPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
555
556
557
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
558
559
560
561
562
563
564
565
    config_class = XLNetConfig
    pretrained_model_archive_map = PRETRAINED_MODEL_ARCHIVE_MAP
    pretrained_config_archive_map = PRETRAINED_CONFIG_ARCHIVE_MAP
    load_tf_weights = load_tf_weights_in_xlnet
    base_model_prefix = "transformer"

    def __init__(self, *inputs, **kwargs):
        super(XLNetPreTrainedModel, self).__init__(*inputs, **kwargs)
thomwolf's avatar
thomwolf committed
566

thomwolf's avatar
thomwolf committed
567
    def init_weights(self, module):
thomwolf's avatar
thomwolf committed
568
569
570
571
572
573
574
575
576
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, XLNetLayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
577
578
579
580
581
        elif isinstance(module, XLNetRelativeAttention):
            for param in [module.q, module.k, module.v, module.o, module.r,
                          module.r_r_bias, module.r_s_bias, module.r_w_bias,
                          module.seg_embed]:
                param.data.normal_(mean=0.0, std=self.config.initializer_range)
thomwolf's avatar
thomwolf committed
582
583
584
585
586
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


class XLNetModel(XLNetPreTrainedModel):
thomwolf's avatar
thomwolf committed
587
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
thomwolf's avatar
thomwolf committed
588
        super(XLNetModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
589
590
591
        self.output_attentions = output_attentions
        self.mem_len = config.mem_len
        self.reuse_len = config.reuse_len
thomwolf's avatar
thomwolf committed
592
593
594
595
596
        self.d_model = config.d_model
        self.same_length = config.same_length
        self.attn_type = config.attn_type
        self.bi_data = config.bi_data
        self.clamp_len = config.clamp_len
thomwolf's avatar
thomwolf committed
597

thomwolf's avatar
thomwolf committed
598
599
        self.word_embedding = nn.Embedding(config.n_token, config.d_model)
        self.mask_emb = nn.Parameter(torch.Tensor(1, 1, config.d_model))
thomwolf's avatar
thomwolf committed
600
601
602
603
        layer = XLNetLayer(config, output_attentions=output_attentions,
                                   keep_multihead_output=keep_multihead_output)
        self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.n_layer)])
        self.dropout = nn.Dropout(config.dropout)
thomwolf's avatar
thomwolf committed
604

thomwolf's avatar
thomwolf committed
605
606
607
608
609
610
611
612
613
614
615
616
617
    def prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.layer[layer].attention.prune_heads(heads)

    def get_multihead_outputs(self):
        """ Gather all multi-head outputs.
            Return: list (layers) of multihead module outputs with gradients
        """
        return [layer.attention.self.multihead_output for layer in self.layer]

thomwolf's avatar
thomwolf committed
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
    def create_mask(self, qlen, mlen):
        """ create causal attention mask.
            float mask where 1.0 indicate masked, 0.0 indicated not-masked.
             same_length=False:      same_length=True:
             <mlen > <  qlen >       <mlen > <  qlen >
          ^ [0 0 0 0 0 1 1 1 1]     [0 0 0 0 0 1 1 1 1]
            [0 0 0 0 0 0 1 1 1]     [1 0 0 0 0 0 1 1 1]
       qlen [0 0 0 0 0 0 0 1 1]     [1 1 0 0 0 0 0 1 1]
            [0 0 0 0 0 0 0 0 1]     [1 1 1 0 0 0 0 0 1]
          v [0 0 0 0 0 0 0 0 0]     [1 1 1 1 0 0 0 0 0]
        """
        attn_mask = torch.ones([qlen, qlen])
        mask_up = torch.triu(attn_mask, diagonal=1)
        attn_mask_pad = torch.zeros([qlen, mlen])
        ret = torch.cat([attn_mask_pad, mask_up], dim=1)
        if self.same_length:
            mask_lo = torch.tril(attn_mask, diagonal=-1)
            ret = torch.cat([ret[:, :qlen] + mask_lo, ret[:, qlen:]], dim=1)

        ret = ret.to(next(self.parameters()))
thomwolf's avatar
thomwolf committed
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
        return ret

    def cache_mem(self, curr_out, prev_mem):
        """cache hidden states into memory."""
        if self.mem_len is None or self.mem_len == 0:
            return None
        else:
            if self.reuse_len is not None and self.reuse_len > 0:
                curr_out = curr_out[:self.reuse_len]

            if prev_mem is None:
                new_mem = curr_out[-self.mem_len:]
            else:
                new_mem = torch.cat([prev_mem, curr_out], dim=0)[-self.mem_len:]

        return new_mem.detach()

thomwolf's avatar
thomwolf committed
655
656
657
658
659
660
661
662
663
664
665
666
    @staticmethod
    def positional_embedding(pos_seq, inv_freq, bsz=None):
        sinusoid_inp = torch.einsum('i,d->id', pos_seq, inv_freq)
        pos_emb = torch.cat([torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)], dim=-1)
        pos_emb = pos_emb[:, None, :]

        if bsz is not None:
            pos_emb = pos_emb.expand(-1, bsz, -1)

        return pos_emb

    def relative_positional_encoding(self, qlen, klen, bsz=None):
thomwolf's avatar
thomwolf committed
667
        """create relative positional encoding."""
thomwolf's avatar
thomwolf committed
668
669
        freq_seq = torch.arange(0, self.d_model, 2.0, dtype=torch.float)
        inv_freq = 1 / (10000 ** (freq_seq / self.d_model))
thomwolf's avatar
thomwolf committed
670
671
672
673
674
675
676
677
678
679
680

        if self.attn_type == 'bi':
            # beg, end = klen - 1, -qlen
            beg, end = klen, -qlen
        elif self.attn_type == 'uni':
            # beg, end = klen - 1, -1
            beg, end = klen, -1
        else:
            raise ValueError('Unknown `attn_type` {}.'.format(self.attn_type))

        if self.bi_data:
thomwolf's avatar
thomwolf committed
681
682
            fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=torch.float)
            bwd_pos_seq = torch.arange(-beg, -end, 1.0, dtype=torch.float)
thomwolf's avatar
thomwolf committed
683
684
685
686
687
688

            if self.clamp_len > 0:
                fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
                bwd_pos_seq = bwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)

            if bsz is not None:
thomwolf's avatar
thomwolf committed
689
690
                fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz//2)
                bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq, bsz//2)
thomwolf's avatar
thomwolf committed
691
            else:
thomwolf's avatar
thomwolf committed
692
693
                fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq)
                bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq)
thomwolf's avatar
thomwolf committed
694
695
696

            pos_emb = torch.cat([fwd_pos_emb, bwd_pos_emb], dim=1)
        else:
thomwolf's avatar
thomwolf committed
697
            fwd_pos_seq = torch.arange(beg, end, -1.0)
thomwolf's avatar
thomwolf committed
698
699
            if self.clamp_len > 0:
                fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
thomwolf's avatar
thomwolf committed
700
            pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz)
thomwolf's avatar
thomwolf committed
701

thomwolf's avatar
thomwolf committed
702
        pos_emb = pos_emb.to(next(self.parameters()))
thomwolf's avatar
thomwolf committed
703
704
        return pos_emb

705
    def forward(self, inp_k, token_type_ids=None, input_mask=None, attention_mask=None,
706
                mems=None, perm_mask=None, target_mapping=None, inp_q=None, head_mask=None):
thomwolf's avatar
thomwolf committed
707
708
        """
        Args:
709
            inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
710
            token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
711
            input_mask: [optional] float32 Tensor in shape [bsz, len], the input mask.
thomwolf's avatar
thomwolf committed
712
                0 for real tokens and 1 for padding.
713
714
715
716
            attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
                but with 1 for real tokens and 0 for padding.
                Added for easy compatibility with the BERT model (which uses this negative masking).
                You can only uses one among `input_mask` and `attention_mask`
thomwolf's avatar
thomwolf committed
717
            mems: [optional] a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
thomwolf's avatar
thomwolf committed
718
719
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
720
721
722
            perm_mask: [optional] float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
thomwolf's avatar
thomwolf committed
723
                If None, each position attends to all the others.
724
725
            target_mapping: [optional] float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
thomwolf's avatar
thomwolf committed
726
727
728
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
729
            inp_q: [optional] float32 Tensor in shape [bsz, len].
thomwolf's avatar
thomwolf committed
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.

            mem_len: int, the number of tokens to cache.
            reuse_len: int, the number of tokens in the currect batch to be cached
                and reused in the future.
            bi_data: bool, whether to use bidirectional input pipeline.
                Usually set to True during pretraining and False during finetuning.
            clamp_len: int, clamp all relative distances larger than clamp_len.
                -1 means no clamping.
            same_length: bool, whether to use the same attention length for each token.
            summary_type: str, "last", "first", "mean", or "attn". The method
                to pool the input to get a vector representation.
        """
745
746
747
748
        # the original code for XLNet uses shapes [len, bsz] with the batch dimension at the end
        # but we want a unified interface in the library with the batch size on the first dimension
        # so we move here the first dimension (batch) to the end
        inp_k = inp_k.transpose(0, 1).contiguous()
thomwolf's avatar
thomwolf committed
749
        token_type_ids = token_type_ids.transpose(0, 1).contiguous() if token_type_ids is not None else None
750
        input_mask = input_mask.transpose(0, 1).contiguous() if input_mask is not None else None
thomwolf's avatar
thomwolf committed
751
        attention_mask = attention_mask.transpose(0, 1).contiguous() if attention_mask is not None else None
752
753
754
755
        perm_mask = perm_mask.permute(1, 2, 0).contiguous() if perm_mask is not None else None
        target_mapping = target_mapping.permute(1, 2, 0).contiguous() if target_mapping is not None else None
        inp_q = inp_q.transpose(0, 1).contiguous() if inp_q is not None else None

thomwolf's avatar
thomwolf committed
756
        qlen, bsz = inp_k.shape[0], inp_k.shape[1]
thomwolf's avatar
thomwolf committed
757
758
        mlen = mems[0].shape[0] if mems is not None else 0
        klen = mlen + qlen
thomwolf's avatar
thomwolf committed
759
760
761

        dtype_float = next(self.parameters()).dtype
        device = next(self.parameters()).device
thomwolf's avatar
thomwolf committed
762
763
764
765

        ##### Attention mask
        # causal attention mask
        if self.attn_type == 'uni':
thomwolf's avatar
thomwolf committed
766
            attn_mask = self.create_mask(qlen, mlen)
thomwolf's avatar
thomwolf committed
767
768
769
770
771
772
773
            attn_mask = attn_mask[:, :, None, None]
        elif self.attn_type == 'bi':
            attn_mask = None
        else:
            raise ValueError('Unsupported attention type: {}'.format(self.attn_type))

        # data mask: input mask & perm mask
774
775
776
777
778
779
780
781
782
        assert input_mask is None or attention_mask is None, "You can only use one of input_mask (uses 1 for padding) "
        "or attention_mask (uses 0 for padding, added for compatbility with BERT). Please choose one."
        if input_mask is None and attention_mask is not None:
            input_mask = 1.0 - attention_mask
        if input_mask is not None and perm_mask is not None:
            data_mask = input_mask[None] + perm_mask
        elif input_mask is not None and perm_mask is None:
            data_mask = input_mask[None]
        elif input_mask is None and perm_mask is not None:
thomwolf's avatar
thomwolf committed
783
784
785
786
787
788
            data_mask = perm_mask
        else:
            data_mask = None

        if data_mask is not None:
            # all mems can be attended to
thomwolf's avatar
thomwolf committed
789
            mems_mask = torch.zeros([data_mask.shape[0], mlen, bsz]).to(data_mask)
thomwolf's avatar
thomwolf committed
790
791
792
793
794
795
796
            data_mask = torch.cat([mems_mask, data_mask], dim=1)
            if attn_mask is None:
                attn_mask = data_mask[:, :, :, None]
            else:
                attn_mask += data_mask[:, :, :, None]

        if attn_mask is not None:
thomwolf's avatar
thomwolf committed
797
            attn_mask = (attn_mask > 0).to(dtype_float)
thomwolf's avatar
thomwolf committed
798
799

        if attn_mask is not None:
thomwolf's avatar
thomwolf committed
800
801
802
            non_tgt_mask = -torch.eye(qlen).to(attn_mask)
            non_tgt_mask = torch.cat([torch.zeros([qlen, mlen]).to(attn_mask), non_tgt_mask], dim=-1)
            non_tgt_mask = ((attn_mask + non_tgt_mask[:, :, None, None]) > 0).to(attn_mask)
thomwolf's avatar
thomwolf committed
803
804
805
        else:
            non_tgt_mask = None

thomwolf's avatar
thomwolf committed
806
807
        ##### Word embeddings and prepare h & g hidden states
        word_emb_k = self.word_embedding(inp_k)
thomwolf's avatar
thomwolf committed
808
809
810
        output_h = self.dropout(word_emb_k)
        if inp_q is not None:
            if target_mapping is not None:
811
                word_emb_q = self.mask_emb.expand(target_mapping.shape[0], bsz, -1)
thomwolf's avatar
thomwolf committed
812
813
            else:
                inp_q_ext = inp_q[:, :, None]
814
                word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k
thomwolf's avatar
thomwolf committed
815
816
817
818
819
            output_g = self.dropout(word_emb_q)
        else:
            output_g = None

        ##### Segment embedding
thomwolf's avatar
thomwolf committed
820
821
        if token_type_ids is not None:
            # Convert `token_type_ids` to one-hot `seg_mat`
thomwolf's avatar
thomwolf committed
822
            mem_pad = torch.zeros([mlen, bsz], dtype=torch.long, device=device)
thomwolf's avatar
thomwolf committed
823
            cat_ids = torch.cat([mem_pad, token_type_ids], dim=0)
thomwolf's avatar
thomwolf committed
824
825

            # `1` indicates not in the same segment [qlen x klen x bsz]
thomwolf's avatar
thomwolf committed
826
            seg_mat = (token_type_ids[:, None] != cat_ids[None, :]).long()
thomwolf's avatar
thomwolf committed
827
            seg_mat = F.one_hot(seg_mat, num_classes=2).to(dtype_float)
thomwolf's avatar
thomwolf committed
828
829
830
831
        else:
            seg_mat = None

        ##### Positional encoding
thomwolf's avatar
thomwolf committed
832
        pos_emb = self.relative_positional_encoding(qlen, klen, bsz=bsz)
thomwolf's avatar
thomwolf committed
833
834
835
836
837
        pos_emb = self.dropout(pos_emb)

        ##### Head mask if needed (for bertology/pruning)
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
thomwolf's avatar
thomwolf committed
838
839
        # input head_mask has shape [num_heads] or [n_layer x num_heads]
        # and head_mask is converted to shape [n_layer x batch x num_heads x seq_length x seq_length]
thomwolf's avatar
thomwolf committed
840
841
842
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
843
                head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
thomwolf's avatar
thomwolf committed
844
845
846
847
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
thomwolf's avatar
thomwolf committed
848
            head_mask = [None] * self.config.n_layer
thomwolf's avatar
thomwolf committed
849
850
851
852
853

        new_mems = []
        if mems is None:
            mems = [None] * len(self.layer)

854
        hidden_states = []
thomwolf's avatar
thomwolf committed
855
856
857
        for i, layer_module in enumerate(self.layer):
            # cache new mems
            new_mems.append(self.cache_mem(output_h, mems[i]))
thomwolf's avatar
thomwolf committed
858
            hidden_states.append((output_h, output_g) if output_g is not None else output_h)
thomwolf's avatar
thomwolf committed
859
860

            output_h, output_g = layer_module(output_h, output_g,
thomwolf's avatar
thomwolf committed
861
862
                                              attn_mask_h=non_tgt_mask, attn_mask_g=attn_mask,
                                              r=pos_emb, seg_mat=seg_mat,
thomwolf's avatar
thomwolf committed
863
864
                                              mems=mems[i], target_mapping=target_mapping,
                                              head_mask=head_mask)
thomwolf's avatar
thomwolf committed
865
        hidden_states.append((output_h, output_g) if output_g is not None else output_h)
thomwolf's avatar
thomwolf committed
866
867
        output = self.dropout(output_g if output_g is not None else output_h)

868
869
        # We transpose back here to shape [bsz, len, hidden_dim] (cf. beginning of forward() method)
        output = output.permute(1, 0, 2).contiguous()
thomwolf's avatar
thomwolf committed
870
871
872
873
        if output_g is not None:
            hidden_states = [h.permute(1, 0, 2).contiguous() for hs in hidden_states for h in hs]
        else:
            hidden_states = [hs.permute(1, 0, 2).contiguous() for hs in hidden_states]
874
875

        return output, hidden_states, new_mems
thomwolf's avatar
thomwolf committed
876
877
878


class XLNetLMHeadModel(XLNetPreTrainedModel):
thomwolf's avatar
thomwolf committed
879
880
881
882
883
884
885
886
887
    """XLNet model ("XLNet: Generalized Autoregressive Pretraining for Language Understanding").

    Params:
        `config`: a XLNetConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False

    Inputs:
888
        inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
889
        token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
890
        input_mask: [optional] float32 Tensor in shape [bsz, len], the input mask.
891
            0 for real tokens and 1 for padding.
892
893
894
895
        attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
            but with 1 for real tokens and 0 for padding.
            Added for easy compatibility with the BERT model (which uses this negative masking).
            You can only uses one among `input_mask` and `attention_mask`
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
        mems: [optional] a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
            from previous batches. The length of the list equals n_layer.
            If None, no memory is used.
        perm_mask: [optional] float32 Tensor in shape [bsz, len, len].
            If perm_mask[k, i, j] = 0, i attend to j in batch k;
            if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
            If None, each position attends to all the others.
        target_mapping: [optional] float32 Tensor in shape [bsz, num_predict, len].
            If target_mapping[k, i, j] = 1, the i-th predict in batch k is
            on the j-th token.
            Only used during pretraining for partial prediction.
            Set to None during finetuning.
        inp_q: [optional] float32 Tensor in shape [bsz, len].
            1 for tokens with losses and 0 for tokens without losses.
            Only used during pretraining for two-stream attention.
            Set to None during finetuning.
thomwolf's avatar
thomwolf committed
912
913
914
915
916
917


    Outputs: Tuple of (encoded_layers, pooled_output)
        `encoded_layers`: controled by `output_all_encoded_layers` argument:
            - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
                of each attention block (i.e. 12 full sequences for XLNet-base, 24 for XLNet-large), each
thomwolf's avatar
thomwolf committed
918
                encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, d_model],
thomwolf's avatar
thomwolf committed
919
            - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
thomwolf's avatar
thomwolf committed
920
921
                to the last attention block of shape [batch_size, sequence_length, d_model],
        `pooled_output`: a torch.FloatTensor of size [batch_size, d_model] which is the output of a
thomwolf's avatar
thomwolf committed
922
923
924
925
926
927
928
            classifier pretrained on top of the hidden state associated to the first character of the
            input (`CLS`) to train on the Next-Sentence task (see XLNet's paper).

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
929
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
930
931
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

thomwolf's avatar
thomwolf committed
932
    config = modeling.XLNetConfig(vocab_size_or_config_json_file=32000, d_model=768,
thomwolf's avatar
thomwolf committed
933
        n_layer=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
934
935

    model = modeling.XLNetModel(config=config)
936
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
thomwolf's avatar
thomwolf committed
937
938
    ```
    """
thomwolf's avatar
thomwolf committed
939
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
thomwolf's avatar
thomwolf committed
940
        super(XLNetLMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
941
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
942
943
        self.attn_type = config.attn_type
        self.same_length = config.same_length
thomwolf's avatar
thomwolf committed
944

thomwolf's avatar
thomwolf committed
945
946
        self.transformer = XLNetModel(config, output_attentions=output_attentions,
                                              keep_multihead_output=keep_multihead_output)
thomwolf's avatar
thomwolf committed
947
        self.lm_loss = nn.Linear(config.d_model, config.n_token, bias=True)
thomwolf's avatar
thomwolf committed
948

thomwolf's avatar
thomwolf committed
949
950
        # Tie weights

thomwolf's avatar
thomwolf committed
951
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
952
        self.tie_weights()
thomwolf's avatar
thomwolf committed
953

thomwolf's avatar
thomwolf committed
954
955
    def tie_weights(self):
        """ Make sure we are sharing the embeddings
thomwolf's avatar
thomwolf committed
956
        """
thomwolf's avatar
thomwolf committed
957
        self.lm_loss.weight = self.transformer.word_embedding.weight
thomwolf's avatar
thomwolf committed
958

959
    def forward(self, inp_k, token_type_ids=None, input_mask=None, attention_mask=None,
thomwolf's avatar
thomwolf committed
960
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
961
                labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
962
963
        """
        Args:
964
            inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
965
            token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
966
            input_mask: float32 Tensor in shape [bsz, len], the input mask.
thomwolf's avatar
thomwolf committed
967
                0 for real tokens and 1 for padding.
968
969
970
971
            attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
                but with 1 for real tokens and 0 for padding.
                Added for easy compatibility with the BERT model (which uses this negative masking).
                You can only uses one among `input_mask` and `attention_mask`
thomwolf's avatar
thomwolf committed
972
973
974
            mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
975
976
977
            perm_mask: float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
thomwolf's avatar
thomwolf committed
978
                If None, each position attends to all the others.
979
980
            target_mapping: float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
thomwolf's avatar
thomwolf committed
981
982
983
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
984
            inp_q: float32 Tensor in shape [bsz, len].
thomwolf's avatar
thomwolf committed
985
986
987
988
989
990
991
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.

            summary_type: str, "last", "first", "mean", or "attn". The method
                to pool the input to get a vector representation.
        """
992
        output, hidden_states, new_mems = self.transformer(inp_k, token_type_ids, input_mask, attention_mask,
993
                                            mems, perm_mask, target_mapping, inp_q, head_mask)
994
995
996

        logits = self.lm_loss(output)

997
        if labels is not None:
998
999
1000
            # Flatten the tokens
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            loss = loss_fct(logits.view(-1, logits.size(-1)),
1001
                            labels.view(-1))
1002
1003
1004
1005
1006
1007
1008
1009
            return loss, new_mems

        # if self.output_attentions:
        #     all_attentions, encoded_layers = encoded_layers
        # if self.output_attentions:
        return logits, new_mems
        #     return all_attentions, encoded_layers, pooled_output

1010
1011
1012
1013
1014
1015
class XLNetSequenceSummary(nn.Module):
    def __init__(self, config, summary_type="last", use_proj=True,
                 output_attentions=False, keep_multihead_output=False):
        super(XLNetSequenceSummary, self).__init__()
        self.summary_type = summary_type
        if use_proj:
thomwolf's avatar
thomwolf committed
1016
            self.summary = nn.Linear(config.d_model, config.d_model)
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
        else:
            self.summary = None
        if summary_type == 'attn':
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError
        self.dropout = nn.Dropout(config.dropout)
        self.activation = nn.Tanh()

thomwolf's avatar
thomwolf committed
1027
1028
    def forward(self, hidden_states):
        """ hidden_states: float Tensor in shape [bsz, seq_len, d_model], the hidden-states of the last layer."""
1029
        if self.summary_type == 'last':
thomwolf's avatar
thomwolf committed
1030
            output = hidden_states[:, -1]
1031
        elif self.summary_type == 'first':
thomwolf's avatar
thomwolf committed
1032
            output = hidden_states[:, 0]
1033
        elif self.summary_type == 'mean':
thomwolf's avatar
thomwolf committed
1034
            output = hidden_states.mean(dim=1)
1035
1036
1037
1038
1039
        elif summary_type == 'attn':
            raise NotImplementedError

        output = self.summary(output)
        output = self.activation(output)
thomwolf's avatar
thomwolf committed
1040
        output = self.dropout(output)
1041
1042
        return output

1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056

class XLNetForSequenceClassification(XLNetPreTrainedModel):
    """XLNet model ("XLNet: Generalized Autoregressive Pretraining for Language Understanding").

    Params:
        `config`: a XLNetConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
        `summary_type`: str, "last", "first", "mean", or "attn". The method
            to pool the input to get a vector representation. Default: last

    Inputs:
        inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
1057
        token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
1058
        input_mask: float32 Tensor in shape [bsz, len], the input mask.
1059
            0 for real tokens and 1 for padding.
1060
1061
1062
1063
        attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
            but with 1 for real tokens and 0 for padding.
            Added for easy compatibility with the BERT model (which uses this negative masking).
            You can only uses one among `input_mask` and `attention_mask`
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
        mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
            from previous batches. The length of the list equals n_layer.
            If None, no memory is used.
        perm_mask: float32 Tensor in shape [bsz, len, len].
            If perm_mask[k, i, j] = 0, i attend to j in batch k;
            if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
            If None, each position attends to all the others.
        target_mapping: float32 Tensor in shape [bsz, num_predict, len].
            If target_mapping[k, i, j] = 1, the i-th predict in batch k is
            on the j-th token.
            Only used during pretraining for partial prediction.
            Set to None during finetuning.
        inp_q: float32 Tensor in shape [bsz, len].
            1 for tokens with losses and 0 for tokens without losses.
            Only used during pretraining for two-stream attention.
            Set to None during finetuning.
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.


    Outputs: Tuple of (logits or loss, mems)
        `logits or loss`:
1086
            if labels is None:
1087
1088
1089
1090
1091
                Token logits with shape [batch_size, sequence_length] 
            else:
                CrossEntropy loss with the targets
        `new_mems`: list (num layers) of updated mem states at the entry of each layer
            each mem state is a torch.FloatTensor of size [self.config.mem_len, batch_size, self.config.d_model]
1092
            Note that the first two dimensions are transposed in `mems` with regards to `input_ids` and `labels`
1093
1094
1095
1096
1097

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
1098
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
1099
1100
1101
1102
1103
1104
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = modeling.XLNetConfig(vocab_size_or_config_json_file=32000, d_model=768,
        n_layer=12, num_attention_heads=12, intermediate_size=3072)

    model = modeling.XLNetModel(config=config)
1105
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
1106
1107
    ```
    """
1108
    def __init__(self, config, summary_type="last", use_proj=True, num_labels=2,
1109
                 output_attentions=False, keep_multihead_output=False):
1110
1111
1112
1113
1114
        super(XLNetForSequenceClassification, self).__init__(config)
        self.output_attentions = output_attentions
        self.attn_type = config.attn_type
        self.same_length = config.same_length
        self.summary_type = summary_type
1115
        self.num_labels = num_labels
1116
1117
1118
1119

        self.transformer = XLNetModel(config, output_attentions=output_attentions,
                                              keep_multihead_output=keep_multihead_output)

1120
1121
1122
        self.sequence_summary = XLNetSequenceSummary(config, summary_type=summary_type,
                                                     use_proj=use_proj, output_attentions=output_attentions,
                                                     keep_multihead_output=keep_multihead_output)
1123
        self.logits_proj = nn.Linear(config.d_model, num_labels)
thomwolf's avatar
thomwolf committed
1124
        self.apply(self.init_weights)
1125

1126
    def forward(self, inp_k, token_type_ids=None, input_mask=None, attention_mask=None,
1127
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
1128
                labels=None, head_mask=None):
1129
1130
1131
        """
        Args:
            inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
1132
            token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
1133
            input_mask: float32 Tensor in shape [bsz, len], the input mask.
1134
                0 for real tokens and 1 for padding.
1135
1136
1137
1138
            attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
                but with 1 for real tokens and 0 for padding.
                Added for easy compatibility with the BERT model (which uses this negative masking).
                You can only uses one among `input_mask` and `attention_mask`
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
            mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
            perm_mask: float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
                If None, each position attends to all the others.
            target_mapping: float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
            inp_q: float32 Tensor in shape [bsz, len].
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.
        """
1156
        output, _, new_mems = self.transformer(inp_k, token_type_ids, input_mask, attention_mask,
1157
                                               mems, perm_mask, target_mapping, inp_q, head_mask)
thomwolf's avatar
thomwolf committed
1158

1159
        output = self.sequence_summary(output)
1160
        logits = self.logits_proj(output)
thomwolf's avatar
thomwolf committed
1161

1162
1163
1164
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
1165
                loss_fct = MSELoss()
1166
                loss = loss_fct(logits.view(-1), labels.view(-1))
1167
            else:
1168
1169
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
thomwolf's avatar
thomwolf committed
1170
1171
            return loss, new_mems

thomwolf's avatar
thomwolf committed
1172
1173
1174
        # if self.output_attentions:
        #     all_attentions, encoded_layers = encoded_layers
        # if self.output_attentions:
thomwolf's avatar
thomwolf committed
1175
        return logits, new_mems
thomwolf's avatar
thomwolf committed
1176
        #     return all_attentions, encoded_layers, pooled_output
thomwolf's avatar
thomwolf committed
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191

class XLNetForQuestionAnswering(XLNetPreTrainedModel):
    """XLNet model for Question Answering (span extraction).
    This module is composed of the XLNet model with a linear layer on top of
    the sequence output that computes start_logits and end_logits

    Params:
        `config`: a XLNetConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
1192
            `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
thomwolf's avatar
thomwolf committed
1193
1194
1195
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see XLNet paper for more details).
1196
1197
1198
1199
1200
        `attention_mask`: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
            but with 1 for real tokens and 0 for padding.
            Added for easy compatibility with the BERT model (which uses this negative masking).
            You can only uses one among `input_mask` and `attention_mask`
        `input_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
thomwolf's avatar
thomwolf committed
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.
        `end_positions`: position of the last token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

    Outputs:
        if `start_positions` and `end_positions` are not `None`:
            Outputs the total_loss which is the sum of the CrossEntropy loss for the start and end token positions.
        if `start_positions` or `end_positions` is `None`:
            Outputs a tuple of start_logits, end_logits which are the logits respectively for the start and end
            position tokens of shape [batch_size, sequence_length].

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
1224
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
1225
1226
1227
1228
1229
1230
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = XLNetConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    model = XLNetForQuestionAnswering(config)
1231
    start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
thomwolf's avatar
thomwolf committed
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
    ```
    """
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
        super(XLNetForQuestionAnswering, self).__init__(config)
        self.output_attentions = output_attentions
        self.transformer = XLNetModel(config, output_attentions=output_attentions,
                                      keep_multihead_output=keep_multihead_output)
        self.qa_outputs = nn.Linear(config.hidden_size, 2)
        self.apply(self.init_weights)

1242
    def forward(self, inp_k, token_type_ids=None, input_mask=None, attention_mask=None,
thomwolf's avatar
thomwolf committed
1243
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
1244
                start_positions=None, end_positions=None, head_mask=None):
1245
        output, _, new_mems = self.transformer(inp_k, token_type_ids, input_mask, attention_mask,
1246
                                            mems, perm_mask, target_mapping, inp_q, head_mask)
thomwolf's avatar
thomwolf committed
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271

        logits = self.qa_outputs(output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
            return total_loss
        elif self.output_attentions:
            return all_attentions, start_logits, end_logits
        return start_logits, end_logits