modeling_xlnet.py 46.6 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch XLNet model.
"""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
from __future__ import absolute_import, division, print_function, unicode_literals

import copy
import json
import logging
import math
import os
import sys
from io import open

import torch
from torch import nn
from torch.nn import CrossEntropyLoss

from .file_utils import cached_path, WEIGHTS_NAME, CONFIG_NAME

logger = logging.getLogger(__name__)

PRETRAINED_MODEL_ARCHIVE_MAP = {
    'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-pytorch_model.bin",
}
PRETRAINED_CONFIG_ARCHIVE_MAP = {
    'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-config.json",
}
XLNET_CONFIG_NAME = 'xlnet_config.json'
TF_WEIGHTS_NAME = 'model.ckpt'

def load_tf_weights_in_xlnet(model, tf_checkpoint_path):
    """ Load tf checkpoints in a pytorch model
    """
    try:
        import re
        import numpy as np
        import tensorflow as tf
    except ImportError:
        print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
    tf_path = os.path.abspath(tf_checkpoint_path)
    print("Converting TensorFlow checkpoint from {}".format(tf_path))
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        print("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
        name = name.split('/')
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
        if any(n in ["adam_v", "adam_m", "global_step"] for n in name):
            print("Skipping {}".format("/".join(name)))
            continue
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
                l = re.split(r'_(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'kernel' or l[0] == 'gamma':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'output_bias' or l[0] == 'beta':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'output_weights':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'squad':
                pointer = getattr(pointer, 'classifier')
            else:
                try:
                    pointer = getattr(pointer, l[0])
                except AttributeError:
                    print("Skipping {}".format("/".join(name)))
                    continue
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        if m_name[-11:] == '_embeddings':
            pointer = getattr(pointer, 'weight')
        elif m_name == 'kernel':
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model


def gelu(x):
    """Implementation of the gelu activation function.
        For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
        0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
        Also see https://arxiv.org/abs/1606.08415
    """
    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}

thomwolf's avatar
thomwolf committed
129
130
131
132
133
134
135
136
137
138
def positional_embedding(pos_seq, inv_freq, bsz=None):
    sinusoid_inp = torch.einsum('i,d->id', pos_seq, inv_freq)
    pos_emb = torch.cat([tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)], -1)
    pos_emb = pos_emb[:, None, :]

    if bsz is not None:
        pos_emb = pos_emb.expand(1, bsz, 1)

    return pos_emb

thomwolf's avatar
thomwolf committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
class XLNetBaseConfig(object):
    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `XLNetConfig` from a Python dictionary of parameters."""
        config = XLNetConfig(vocab_size_or_config_json_file=-1)
        for key, value in json_object.items():
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `XLNetConfig` from a json file of parameters."""
        with open(json_file, "r", encoding='utf-8') as reader:
            text = reader.read()
        return cls.from_dict(json.loads(text))

    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

    def to_json_file(self, json_file_path):
        """ Save this instance to a json file."""
        with open(json_file_path, "w", encoding='utf-8') as writer:
            writer.write(self.to_json_string())


class XLNetConfig(XLNetBaseConfig):
    """Configuration class to store the configuration of a `XLNetModel`.
    """
    def __init__(self,
                 vocab_size_or_config_json_file,
thomwolf's avatar
thomwolf committed
178
179
180
181
                 d_model=1024,
                 n_layer=24,
                 n_head=16,
                 d_inner=4096,
thomwolf's avatar
thomwolf committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
                 ff_activation="gelu",
                 untie_r=True,

                 max_position_embeddings=512,
                 initializer_range=0.02,
                 layer_norm_eps=1e-12):
        """Constructs XLNetConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `XLNetModel`.
            d_model: Size of the encoder layers and the pooler layer.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            d_inner: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            ff_activation: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            untie_r: untie relative position biases

            dropout: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            dropatt: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
            layer_norm_eps: The epsilon used by LayerNorm.
        """
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.d_model = d_model
            self.n_layer = n_layer
            self.n_head = n_head
thomwolf's avatar
thomwolf committed
224
225
            assert d_model % n_head == 0
            self.d_head = d_model // n_head
thomwolf's avatar
thomwolf committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
            self.ff_activation = ff_activation
            self.d_inner = d_inner
            self.untie_r = untie_r
            self.max_position_embeddings = max_position_embeddings
            self.initializer_range = initializer_range
            self.layer_norm_eps = layer_norm_eps
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")


class XLNetRunConfig(XLNetBaseConfig):
    """XLNetRunConfig contains hyperparameters that could be different
    between pretraining and finetuning.
    These hyperparameters can also be changed from run to run.
    We store them separately from XLNetConfig for flexibility.
    """
    def __init__(self, 
thomwolf's avatar
thomwolf committed
244
245
                 dropout=0.1,
                 dropatt=0.1,
thomwolf's avatar
thomwolf committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
                 init="normal",
                 init_range=0.1,
                 init_std=0.02,
                 mem_len=None,
                 reuse_len=None,
                 bi_data=False,
                 clamp_len=-1,
                 same_length=False):
        """
        Args:
        dropout: float, dropout rate.
        dropatt: float, dropout rate on attention probabilities.
        init: str, the initialization scheme, either "normal" or "uniform".
        init_range: float, initialize the parameters with a uniform distribution
            in [-init_range, init_range]. Only effective when init="uniform".
        init_std: float, initialize the parameters with a normal distribution
            with mean 0 and stddev init_std. Only effective when init="normal".
        mem_len: int, the number of tokens to cache.
        reuse_len: int, the number of tokens in the currect batch to be cached
            and reused in the future.
        bi_data: bool, whether to use bidirectional input pipeline.
            Usually set to True during pretraining and False during finetuning.
        clamp_len: int, clamp all relative distances larger than clamp_len.
            -1 means no clamping.
        same_length: bool, whether to use the same attention length for each token.
        """

        self.init = init
        self.init_range = init_range
        self.init_std = init_std
        self.dropout = dropout
        self.dropatt = dropatt
        self.mem_len = mem_len
        self.reuse_len = reuse_len
        self.bi_data = bi_data
        self.clamp_len = clamp_len
        self.same_length = same_length

try:
    from apex.normalization.fused_layer_norm import FusedLayerNorm as XLNetLayerNorm
except ImportError:
    logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
    class XLNetLayerNorm(nn.Module):
thomwolf's avatar
thomwolf committed
289
        def __init__(self, d_model, eps=1e-12):
thomwolf's avatar
thomwolf committed
290
291
292
            """Construct a layernorm module in the TF style (epsilon inside the square root).
            """
            super(XLNetLayerNorm, self).__init__()
thomwolf's avatar
thomwolf committed
293
294
            self.weight = nn.Parameter(torch.ones(d_model))
            self.bias = nn.Parameter(torch.zeros(d_model))
thomwolf's avatar
thomwolf committed
295
296
297
298
299
300
301
302
            self.variance_epsilon = eps

        def forward(self, x):
            u = x.mean(-1, keepdim=True)
            s = (x - u).pow(2).mean(-1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.variance_epsilon)
            return self.weight * x + self.bias

thomwolf's avatar
thomwolf committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
class XLNetRelativeAttention(nn.Module):
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
        super(XLNetRelativeAttention, self).__init__()
        self.output_attentions = output_attentions
        if config.d_model % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.d_model, config.num_attention_heads))
        self.output_attentions = output_attentions
        self.keep_multihead_output = keep_multihead_output
        self.multihead_output = None

        self.n_head = config.num_attention_heads
        self.d_head = config.d_head
        self.d_model = config.d_model
        self.scale = 1 / (config.d_head ** 0.5)

        self.q = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.k = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.v = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.o = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.r = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))

        self.r_r_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
        self.r_s_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
        self.r_w_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
        self.seg_embed = nn.Parameter(torch.Tensor(self.n_head, 2, self.d_head))

        self.LayerNorm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.dropout)

    def prune_heads(self, heads):
        raise NotImplementedError

    def rel_attn_core(self, q_head, k_head_h, v_head_h, k_head_r, seg_mat=None, attn_mask=None):
        """Core relative positional attention operations."""

        # content based attention score
        ac = torch.einsum('ibnd,jbnd->ijbn', q_head + self.r_w_bias, k_head_h)

        # position based attention score
        bd = torch.einsum('ibnd,jbnd->ijbn', q_head + self.r_r_bias, k_head_r)
        bd = rel_shift(bd, klen=torch.shape(ac)[1])

        # segment based attention score
        if seg_mat is None:
            ef = 0
        else:
            ef = torch.einsum('ibnd,snd->ibns', q_head + self.r_s_bias, self.seg_embed)
            ef = torch.einsum('ijbs,ibns->ijbn', seg_mat, ef)

        # merge attention scores and perform masking
        attn_score = (ac + bd + ef) * self.scale
        if attn_mask is not None:
            # attn_score = attn_score * (1 - attn_mask) - 1e30 * attn_mask
            attn_score = attn_score - 1e30 * attn_mask

        # attention probability
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropout(attn_prob)

        # attention output
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', attn_prob, v_head_h)

        return attn_vec

    def post_attention(self, h, attn_vec, residual=True):
        """Post-attention processing."""
        # post-attention projection (back to `d_model`)
        attn_out = torch.einsum('ibnd,hnd->ibh', attn_vec, self.o)

        attn_out = self.dropout(attn_out)
        if residual:
            attn_out = attn_out + h
        output = self.LayerNorm(attn_out)

        return output

    def forward(self, h, g,
                      attn_mask_h, attn_mask_g,
                      r, seg_mat,
                      mems=None, target_mapping=None, head_mask=None):
        if g is not None:
            ###### Two-stream attention with relative positional encoding.
            # content based attention score
            if mems is not None and mems.dim() > 1:
                cat = torch.cat([mems, h], dim=0)
            else:
                cat = h

            # content-based key head
            k_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.k)

            # content-based value head
            v_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.v)

            # position-based key head
            k_head_r = torch.einsum('ibh,hnd->ibnd', r, self.r)

            ##### h-stream
            # content-stream query head
            q_head_h = torch.einsum('ibh,hnd->ibnd', h, self.q)

            # core attention ops
            attn_vec_h = self.rel_attn_core(
                q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h)

            # post processing
            output_h = self.post_attention(h, attn_vec_h)

            ##### g-stream
            # query-stream query head
            q_head_g = torch.einsum('ibh,hnd->ibnd', g, self.q)

            # core attention ops
            if target_mapping is not None:
                q_head_g = torch.einsum('mbnd,mlb->lbnd', q_head_g, target_mapping)
                attn_vec_g = self.rel_attn_core(
                    q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g)
                attn_vec_g = torch.einsum('lbnd,mlb->mbnd', attn_vec_g, target_mapping)
            else:
                attn_vec_g = self.rel_attn_core(
                    q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g)

            # post processing
            output_g = self.post_attention(g, attn_vec_g)
            attention_output = output_h, output_g
        else:
            ###### Multi-head attention with relative positional encoding
            if mems is not None and mems.dim() > 1:
                cat = torch.cat([mems, h], dim=0)
            else:
                cat = h

            # content heads
            q_head_h = torch.einsum('ibh,hnd->ibnd', h, self.q)
            k_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.k)
            v_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.v)

            # positional heads
            k_head_r = torch.einsum('ibh,hnd->ibnd', r, self.r)

            # core attention ops
            attn_vec = self.rel_attn_core(
                q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h)

            # post processing
            attention_output = self.post_attention(h, attn_vec)


        # Mask heads if we want to
        # if head_mask is not None:
        #     attention_probs = attention_probs * head_mask

        # context_layer = torch.matmul(attention_probs, value_layer)
        # if self.keep_multihead_output:
        #     self.multihead_output = context_layer
        #     self.multihead_output.retain_grad()

        # context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        # new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        # context_layer = context_layer.view(*new_context_layer_shape)

        # if self.output_attentions:
        #     attentions, self_output = self_output
        # if self.output_attentions:
        #     return attentions, attention_output
        return attention_output

class XLNetFeedForward(nn.Module):
    def __init__(self, config):
        super(XLNetFeedForward, self).__init__()
        self.LayerNorm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps)
        self.layer_1 = nn.Linear(config.d_model, config.d_inner)
        self.layer_2 = nn.Linear(config.d_inner, config.d_model)
        self.dropout = nn.Dropout(config.dropout)
        if isinstance(config.ff_activation, str) or (sys.version_info[0] == 2 and isinstance(config.ff_activation, unicode)):
            self.activation_function = ACT2FN[config.ff_activation]
        else:
            self.activation_function = config.ff_activation

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.layer_1(hidden_states)
        hidden_states = self.activation_function(hidden_states)
        hidden_states = self.layer_2(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states

class XLNetLayer(nn.Module):
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
        super(XLNetLayer, self).__init__()
        self.output_attentions = output_attentions
        self.rel_attn = XLNetRelativeAttention(config, output_attentions=output_attentions,
                                               keep_multihead_output=keep_multihead_output)
        self.ff = XLNetFeedForward(config)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, output_h, output_g,
                attn_mask_h, attn_mask_g,
                r, seg_mat, r, seg_mat,
                two_streams=False, mems=None, target_mapping=None, head_mask=None):
        output_h, output_g = self.rel_attn(output_h, output_g,
                                           attn_mask_h, attn_mask_g,
                                           r, seg_mat,
                                           mems=mems, target_mapping=target_mapping, head_mask=head_mask)
        if two_streams:
            output_g = self.ff(output_g)
        output_h = self.ff(output_h)

        # if self.output_attentions:
        #     return attentions, layer_output
        return output_h, output_g

thomwolf's avatar
thomwolf committed
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
class XLNetPreTrainedModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    def __init__(self, config, *inputs, **kwargs):
        super(XLNetPreTrainedModel, self).__init__()
        if not isinstance(config, XLNetConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `XLNetConfig`. "
                "To create a model from a Google pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                ))
        self.config = config

    def init_xlnet_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, XLNetLayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
        """
        Instantiate a XLNetPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
            pretrained_model_name_or_path: either:
                - a str with the name of a pre-trained model to load selected in the list of:
                    . `xlnet-large-cased`
                - a path or url to a pretrained model archive containing:
                    . `xlnet_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a XLNetForPreTraining instance
                - a path or url to a pretrained model archive containing:
                    . `xlnet_config.json` a configuration file for the model
                    . `model.chkpt` a TensorFlow checkpoint
            from_tf: should we load the weights from a locally saved TensorFlow checkpoint
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
            state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models
            *inputs, **kwargs: additional input for the specific XLNet class
                (ex: num_labels for XLNetForSequenceClassification)
        """
        state_dict = kwargs.get('state_dict', None)
        kwargs.pop('state_dict', None)
        cache_dir = kwargs.get('cache_dir', None)
        kwargs.pop('cache_dir', None)
        from_tf = kwargs.get('from_tf', False)
        kwargs.pop('from_tf', None)

        if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
            archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
            config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path]
        else:
            if from_tf:
                # Directly load from a TensorFlow checkpoint
                archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME)
                config_file = os.path.join(pretrained_model_name_or_path, XLNET_CONFIG_NAME)
            else:
                archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
                config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
        # redirect to the cache, if necessary
        try:
            resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
        except EnvironmentError:
            if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
                logger.error(
                    "Couldn't reach server at '{}' to download pretrained weights.".format(
                        archive_file))
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find any file "
                    "associated to this path or url.".format(
                        pretrained_model_name_or_path,
                        ', '.join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()),
                        archive_file))
            return None
        try:
            resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
        except EnvironmentError:
            if pretrained_model_name_or_path in PRETRAINED_CONFIG_ARCHIVE_MAP:
                logger.error(
                    "Couldn't reach server at '{}' to download pretrained model configuration file.".format(
                        config_file))
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find any file "
                    "associated to this path or url.".format(
                        pretrained_model_name_or_path,
                        ', '.join(PRETRAINED_CONFIG_ARCHIVE_MAP.keys()),
                        config_file))
            return None
        if resolved_archive_file == archive_file and resolved_config_file == config_file:
            logger.info("loading weights file {}".format(archive_file))
            logger.info("loading configuration file {}".format(config_file))
        else:
            logger.info("loading weights file {} from cache at {}".format(
                archive_file, resolved_archive_file))
            logger.info("loading configuration file {} from cache at {}".format(
                config_file, resolved_config_file))
        # Load config
        config = XLNetConfig.from_json_file(resolved_config_file)
        logger.info("Model config {}".format(config))
        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
        if state_dict is None and not from_tf:
            state_dict = torch.load(resolved_archive_file, map_location='cpu')
        if from_tf:
            # Directly load from a TensorFlow checkpoint
            return load_tf_weights_in_xlnet(model, resolved_archive_file)
        # Load from a PyTorch state_dict
        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
        metadata = getattr(state_dict, '_metadata', None)
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

        def load(module, prefix=''):
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            module._load_from_state_dict(
                state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
            for name, child in module._modules.items():
                if child is not None:
                    load(child, prefix + name + '.')
        start_prefix = ''
        if not hasattr(model, 'xlnet') and any(s.startswith('xlnet.') for s in state_dict.keys()):
            start_prefix = 'xlnet.'
        load(model, prefix=start_prefix)
        if len(missing_keys) > 0:
            logger.info("Weights of {} not initialized from pretrained model: {}".format(
                model.__class__.__name__, missing_keys))
        if len(unexpected_keys) > 0:
            logger.info("Weights from pretrained model not used in {}: {}".format(
                model.__class__.__name__, unexpected_keys))
        if len(error_msgs) > 0:
            raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
                               model.__class__.__name__, "\n\t".join(error_msgs)))
        return model


class XLNetModel(XLNetPreTrainedModel):
thomwolf's avatar
thomwolf committed
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
        super(XLNetModel, self).__init__()
        self.output_attentions = output_attentions
        self.mem_len = config.mem_len
        self.reuse_len = config.reuse_len
        layer = XLNetLayer(config, output_attentions=output_attentions,
                                  keep_multihead_output=keep_multihead_output)
        self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])

    @classmethod
    def _create_mask(qlen, mlen, dtype=torch.float, same_length=False):
        """create causal attention mask."""
        attn_mask = torch.ones([qlen, qlen], dtype=dtype)
        mask_u = tf.matrix_band_part(attn_mask, 0, -1)
        mask_dia = tf.matrix_band_part(attn_mask, 0, 0)
        attn_mask_pad = tf.zeros([qlen, mlen], dtype=dtype)
        ret = tf.concat([attn_mask_pad, mask_u - mask_dia], 1)
        if same_length:
            mask_l = tf.matrix_band_part(attn_mask, -1, 0)
            ret = tf.concat([ret[:, :qlen] + mask_l - mask_dia, ret[:, qlen:]], 1)

        return ret

    def cache_mem(self, curr_out, prev_mem):
        """cache hidden states into memory."""
        if self.mem_len is None or self.mem_len == 0:
            return None
        else:
            if self.reuse_len is not None and self.reuse_len > 0:
                curr_out = curr_out[:self.reuse_len]

            if prev_mem is None:
                new_mem = curr_out[-self.mem_len:]
            else:
                new_mem = torch.cat([prev_mem, curr_out], dim=0)[-self.mem_len:]

        return new_mem.detach()

    def relative_positional_encoding(self, qlen, klen, bsz=None, dtype=torch.float):
        """create relative positional encoding."""
        freq_seq = torch.zrange(0, d_model, 2.0, dtype=dtype)
        inv_freq = 1 / (10000 ** (freq_seq / self.config.d_model))

        if self.attn_type == 'bi':
            # beg, end = klen - 1, -qlen
            beg, end = klen, -qlen
        elif self.attn_type == 'uni':
            # beg, end = klen - 1, -1
            beg, end = klen, -1
        else:
            raise ValueError('Unknown `attn_type` {}.'.format(self.attn_type))

        if self.bi_data:
            fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=dtype)
            bwd_pos_seq = torch.arange(-beg, -end, 1.0, dtype=dtype)

            if self.clamp_len > 0:
                fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
                bwd_pos_seq = bwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)

            if bsz is not None:
                fwd_pos_emb = positional_embedding(fwd_pos_seq, inv_freq, bsz//2)
                bwd_pos_emb = positional_embedding(bwd_pos_seq, inv_freq, bsz//2)
            else:
                fwd_pos_emb = positional_embedding(fwd_pos_seq, inv_freq)
                bwd_pos_emb = positional_embedding(bwd_pos_seq, inv_freq)

            pos_emb = torch.cat([fwd_pos_emb, bwd_pos_emb], dim=1)
        else:
            fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=dtype)
            if self.clamp_len > 0:
                fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
            pos_emb = positional_embedding(fwd_pos_seq, inv_freq, bsz)

        return pos_emb

    def forward(self, inp_k, seg_id=None, input_mask=None,
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
                output_all_encoded_layers=True, head_mask=None):
        """
        Args:
            inp_k: int32 Tensor in shape [len, bsz], the input token IDs.
            seg_id: int32 Tensor in shape [len, bsz], the input segment IDs.
            input_mask: float32 Tensor in shape [len, bsz], the input mask.
                0 for real tokens and 1 for padding.
            mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
            perm_mask: float32 Tensor in shape [len, len, bsz].
                If perm_mask[i, j, k] = 0, i attend to j in batch k;
                if perm_mask[i, j, k] = 1, i does not attend to j in batch k.
                If None, each position attends to all the others.
            target_mapping: float32 Tensor in shape [num_predict, len, bsz].
                If target_mapping[i, j, k] = 1, the i-th predict in batch k is
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
            inp_q: float32 Tensor in shape [len, bsz].
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.

            mem_len: int, the number of tokens to cache.
            reuse_len: int, the number of tokens in the currect batch to be cached
                and reused in the future.
            bi_data: bool, whether to use bidirectional input pipeline.
                Usually set to True during pretraining and False during finetuning.
            clamp_len: int, clamp all relative distances larger than clamp_len.
                -1 means no clamping.
            same_length: bool, whether to use the same attention length for each token.
            summary_type: str, "last", "first", "mean", or "attn". The method
                to pool the input to get a vector representation.
        """
        qlen, bsz = inp_k.shape
        mlen = mems[0].shape[0] if mems is not None else 0
        klen = mlen + qlen

        ##### Attention mask
        # causal attention mask
        if self.attn_type == 'uni':
            attn_mask = _create_mask(qlen, mlen, inp_k.dtype, self.same_length)
            attn_mask = attn_mask[:, :, None, None]
        elif self.attn_type == 'bi':
            attn_mask = None
        else:
            raise ValueError('Unsupported attention type: {}'.format(self.attn_type))

        # data mask: input mask & perm mask
        if input_mask is not None and perm_mask is not None:
            data_mask = input_mask[None] + perm_mask
        elif input_mask is not None and perm_mask is None:
            data_mask = input_mask[None]
        elif input_mask is None and perm_mask is not None:
            data_mask = perm_mask
        else:
            data_mask = None

        if data_mask is not None:
            # all mems can be attended to
            mems_mask = torch.zeros([data_mask.shape[0], mlen, bsz], dtype=data_mask.dtype, device=data_mask.device)
            data_mask = torch.cat([mems_mask, data_mask], dim=1)
            if attn_mask is None:
                attn_mask = data_mask[:, :, :, None]
            else:
                attn_mask += data_mask[:, :, :, None]

        if attn_mask is not None:
            attn_mask = (attn_mask > 0).float()

        if attn_mask is not None:
            non_tgt_mask = -tf.eye(qlen, dtype=tf_float)
            non_tgt_mask = tf.concat([tf.zeros([qlen, mlen], dtype=tf_float),
                                    non_tgt_mask], axis=-1)
            non_tgt_mask = tf.cast((attn_mask + non_tgt_mask[:, :, None, None]) > 0,
                                    dtype=tf_float)
        else:
            non_tgt_mask = None

        ##### Word embedding
        word_emb_k = self.word_embedding(inp_k)
        output_h = self.dropout(word_emb_k)
        if inp_q is not None:
            if target_mapping is not None:
                word_emb_q = mask_emb.expand(target_mapping.shape[0], bsz, 1)
            else:
                inp_q_ext = inp_q[:, :, None]
                word_emb_q = inp_q_ext * mask_emb + (1 - inp_q_ext) * word_emb_k
            output_g = self.dropout(word_emb_q)
        else:
            output_g = None

        ##### Segment embedding
        if seg_id is not None:
            # Convert `seg_id` to one-hot `seg_mat`
            mem_pad = torch.zeros([mlen, bsz], dtype=torch.long)
            cat_ids = torch.cat([mem_pad, seg_id], dim=0)

            # `1` indicates not in the same segment [qlen x klen x bsz]
            seg_mat = (seg_id[:, None] != cat_ids[None, :]).long()
            # seg_mat = tf.one_hot(seg_mat, 2, dtype=tf_float)
        else:
            seg_mat = None

        ##### Positional encoding
        pos_emb = relative_positional_encoding(qlen, klen, bsz=bsz, dtype=inp_k.dtype)
        pos_emb = self.dropout(pos_emb)

        ##### Head mask if needed (for bertology/pruning)
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                head_mask = head_mask.expand_as(self.config.num_hidden_layers, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.config.num_hidden_layers

        new_mems = []
        if mems is None:
            mems = [None] * len(self.layer)

        for i, layer_module in enumerate(self.layer):
            # cache new mems
            new_mems.append(self.cache_mem(output_h, mems[i]))

            output_h, output_g = layer_module(output_h, output_g,
                                              attn_mask_h, attn_mask_g,
                                              r, seg_mat,
                                              mems=mems[i], target_mapping=target_mapping,
                                              head_mask=head_mask)

        output = self.dropout(output_g if output_g is not None else output_h)

        return output


class XLNetLMHeadModel(XLNetPreTrainedModel):
thomwolf's avatar
thomwolf committed
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
    """XLNet model ("XLNet: Generalized Autoregressive Pretraining for Language Understanding").

    Params:
        `config`: a XLNetConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see XLNet paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.


    Outputs: Tuple of (encoded_layers, pooled_output)
        `encoded_layers`: controled by `output_all_encoded_layers` argument:
            - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
                of each attention block (i.e. 12 full sequences for XLNet-base, 24 for XLNet-large), each
thomwolf's avatar
thomwolf committed
920
                encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, d_model],
thomwolf's avatar
thomwolf committed
921
            - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
thomwolf's avatar
thomwolf committed
922
923
                to the last attention block of shape [batch_size, sequence_length, d_model],
        `pooled_output`: a torch.FloatTensor of size [batch_size, d_model] which is the output of a
thomwolf's avatar
thomwolf committed
924
925
926
927
928
929
930
931
932
933
            classifier pretrained on top of the hidden state associated to the first character of the
            input (`CLS`) to train on the Next-Sentence task (see XLNet's paper).

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

thomwolf's avatar
thomwolf committed
934
    config = modeling.XLNetConfig(vocab_size_or_config_json_file=32000, d_model=768,
thomwolf's avatar
thomwolf committed
935
936
937
938
939
940
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    model = modeling.XLNetModel(config=config)
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
    ```
    """
thomwolf's avatar
thomwolf committed
941
942
    def __init__(self, config, run_config, output_attentions=False, keep_multihead_output=False):
        super(XLNetLMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
943
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
944
945
946
947
948
949
950
951
952
953
954
955
956
957
        self.attn_type = run_config.attn_type
        self.same_length = run_config.same_length

        self.word_embedding = nn.Embedding(config.vocab_size, config.d_model)
        self.mask_emb = nn.Parameter(torch.Tensor(1, 1, self.d_model))
        self.transformer = XLNetModel(config,
                                            output_attentions=output_attentions,
                                            keep_multihead_output=keep_multihead_output)
        self.lm_loss = nn.Linear(config.d_model, config.vocab_size, bias=True)
        self.dropout = nn.Dropout(config.dropout)
        # Tie weights
        if config.tie_weight:
            self.lm_loss.weight = self.word_embedding.weight

thomwolf's avatar
thomwolf committed
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
        self.apply(self.init_xlnet_weights)

    def prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    def get_multihead_outputs(self):
        """ Gather all multi-head outputs.
            Return: list (layers) of multihead module outputs with gradients
        """
        return [layer.attention.self.multihead_output for layer in self.encoder.layer]

thomwolf's avatar
thomwolf committed
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
    def forward(self, inp_k, seg_id=None, input_mask=None,
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
                output_all_encoded_layers=True, head_mask=None):
        """
        Args:
            inp_k: int32 Tensor in shape [len, bsz], the input token IDs.
            seg_id: int32 Tensor in shape [len, bsz], the input segment IDs.
            input_mask: float32 Tensor in shape [len, bsz], the input mask.
                0 for real tokens and 1 for padding.
            mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
            perm_mask: float32 Tensor in shape [len, len, bsz].
                If perm_mask[i, j, k] = 0, i attend to j in batch k;
                if perm_mask[i, j, k] = 1, i does not attend to j in batch k.
                If None, each position attends to all the others.
            target_mapping: float32 Tensor in shape [num_predict, len, bsz].
                If target_mapping[i, j, k] = 1, the i-th predict in batch k is
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
            inp_q: float32 Tensor in shape [len, bsz].
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.

            mem_len: int, the number of tokens to cache.
            reuse_len: int, the number of tokens in the currect batch to be cached
                and reused in the future.
            bi_data: bool, whether to use bidirectional input pipeline.
                Usually set to True during pretraining and False during finetuning.
            clamp_len: int, clamp all relative distances larger than clamp_len.
                -1 means no clamping.
            same_length: bool, whether to use the same attention length for each token.
            summary_type: str, "last", "first", "mean", or "attn". The method
                to pool the input to get a vector representation.
        """
        output, new_mems = self.transformer(output_h, non_tgt_mask, r, seg_mat,
                                            output_g=output_g, attn_mask_g=attn_mask,
                                            mems=mems, target_mapping=target_mapping,
                                            head_mask=head_mask)

        logits = self.lm_loss(output)
thomwolf's avatar
thomwolf committed
1016

thomwolf's avatar
thomwolf committed
1017
1018
1019
1020
1021
1022
1023
1024
1025
        # if self.output_attentions:
        #     all_attentions, encoded_layers = encoded_layers
        # sequence_output = encoded_layers[-1]
        # pooled_output = self.pooler(sequence_output)
        # if not output_all_encoded_layers:
        #     encoded_layers = encoded_layers[-1]
        # if self.output_attentions:
        #     return all_attentions, encoded_layers, pooled_output
        return output, new_mems