run_bert_squad.py 21.2 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Run BERT on SQuAD."""

thomwolf's avatar
thomwolf committed
18
from __future__ import absolute_import, division, print_function
thomwolf's avatar
thomwolf committed
19

20
import argparse
thomwolf's avatar
thomwolf committed
21
import logging
thomwolf's avatar
thomwolf committed
22
import os
23
import random
thomwolf's avatar
thomwolf committed
24
25
import sys
from io import open
thomwolf's avatar
thomwolf committed
26

thomwolf's avatar
thomwolf committed
27
import numpy as np
28
import torch
thomwolf's avatar
thomwolf committed
29
30
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
31
from torch.utils.data.distributed import DistributedSampler
thomwolf's avatar
thomwolf committed
32
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
33

thomwolf's avatar
thomwolf committed
34
35
from tensorboardX import SummaryWriter

thomwolf's avatar
thomwolf committed
36
37
from pytorch_pretrained_bert.file_utils import WEIGHTS_NAME, CONFIG_NAME
from pytorch_pretrained_bert.modeling import BertForQuestionAnswering
38
from pytorch_pretrained_bert.optimization import BertAdam, WarmupLinearSchedule
thomwolf's avatar
thomwolf committed
39
40
from pytorch_pretrained_bert.tokenization import BertTokenizer

41
from utils_squad import read_squad_examples, convert_examples_to_features, RawResult, write_predictions
thomwolf's avatar
thomwolf committed
42
43
44
45
46

if sys.version_info[0] == 2:
    import cPickle as pickle
else:
    import pickle
thomwolf's avatar
thomwolf committed
47

48
logger = logging.getLogger(__name__)
thomwolf's avatar
thomwolf committed
49
50


51
52
53
54
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
thomwolf's avatar
thomwolf committed
55
56
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
57
58
                        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
                        "bert-base-multilingual-cased, bert-base-chinese.")
59
    parser.add_argument("--output_dir", default=None, type=str, required=True,
60
                        help="The output directory where the model checkpoints and predictions will be written.")
61
62
63
64
65
66
67
68
69
70
71
72
73

    ## Other parameters
    parser.add_argument("--train_file", default=None, type=str, help="SQuAD json for training. E.g., train-v1.1.json")
    parser.add_argument("--predict_file", default=None, type=str,
                        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
    parser.add_argument("--max_seq_length", default=384, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
                             "longer than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--doc_stride", default=128, type=int,
                        help="When splitting up a long document into chunks, how much stride to take between chunks.")
    parser.add_argument("--max_query_length", default=64, type=int,
                        help="The maximum number of tokens for the question. Questions longer than this will "
                             "be truncated to this length.")
74
75
    parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
    parser.add_argument("--do_predict", action='store_true', help="Whether to run eval on the dev set.")
76
77
78
79
80
81
    parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.")
    parser.add_argument("--predict_batch_size", default=8, type=int, help="Total batch size for predictions.")
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion", default=0.1, type=float,
thomwolf's avatar
thomwolf committed
82
                        help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10%% "
83
84
85
86
87
88
89
                             "of training.")
    parser.add_argument("--n_best_size", default=20, type=int,
                        help="The total number of n-best predictions to generate in the nbest_predictions.json "
                             "output file.")
    parser.add_argument("--max_answer_length", default=30, type=int,
                        help="The maximum length of an answer that can be generated. This is needed because the start "
                             "and end predictions are not conditioned on one another.")
90
    parser.add_argument("--verbose_logging", action='store_true',
91
92
93
94
95
                        help="If true, all of the warnings related to data processing will be printed. "
                             "A number of warnings are expected for a normal SQuAD evaluation.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
96
97
    parser.add_argument('--seed',
                        type=int,
thomwolf's avatar
thomwolf committed
98
99
                        default=42,
                        help="random seed for initialization")
100
101
102
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
103
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
104
105
106
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Whether to lower case the input text. True for uncased models, False for cased models.")
107
108
109
110
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
111
112
113
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
thomwolf's avatar
thomwolf committed
114
115
116
    parser.add_argument('--overwrite_output_dir',
                        action='store_true',
                        help="Overwrite the content of the output directory")
thomwolf's avatar
thomwolf committed
117
    parser.add_argument('--loss_scale',
118
119
120
121
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
thomwolf's avatar
thomwolf committed
122
123
124
125
126
127
    parser.add_argument('--version_2_with_negative',
                        action='store_true',
                        help='If true, the SQuAD examples contain some that do not have an answer.')
    parser.add_argument('--null_score_diff_threshold',
                        type=float, default=0.0,
                        help="If null_score - best_non_null is greater than the threshold predict null.")
thomwolf's avatar
thomwolf committed
128
129
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
130
    args = parser.parse_args()
thomwolf's avatar
thomwolf committed
131
132
133
134
135
136
137
138
    print(args)

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()
139
140
141
142
143

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
144
        torch.cuda.set_device(args.local_rank)
145
146
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
thomwolf's avatar
thomwolf committed
147
148
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
149
150
151
152
153

    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)

154
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
thomwolf's avatar
thomwolf committed
155
        device, n_gpu, bool(args.local_rank != -1), args.fp16))
thomwolf's avatar
thomwolf committed
156

157
158
159
    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))
thomwolf's avatar
thomwolf committed
160

161
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
162
163
164
165

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
thomwolf's avatar
thomwolf committed
166
167
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)
168
169

    if not args.do_train and not args.do_predict:
170
171
        raise ValueError("At least one of `do_train` or `do_predict` must be True.")

172
173
    if args.do_train:
        if not args.train_file:
174
175
            raise ValueError(
                "If `do_train` is True, then `train_file` must be specified.")
176
177
    if args.do_predict:
        if not args.predict_file:
178
179
180
            raise ValueError(
                "If `do_predict` is True, then `predict_file` must be specified.")

thomwolf's avatar
thomwolf committed
181
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
182
        raise ValueError("Output directory {} already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))
thomwolf's avatar
thomwolf committed
183
184
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
185

thomwolf's avatar
thomwolf committed
186
187
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
188
    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
thomwolf's avatar
oups  
thomwolf committed
189
    model = BertForQuestionAnswering.from_pretrained(args.bert_model)
thomwolf's avatar
thomwolf committed
190
191
    if args.local_rank == 0:
        torch.distributed.barrier()
samuel.broscheit's avatar
samuel.broscheit committed
192
193
194
195
196

    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
197
198
199
200
        model = torch.nn.parallel.DistributedDataParallel(model,
                                                          device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)
samuel.broscheit's avatar
samuel.broscheit committed
201
202
203
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

204
    if args.do_train:
thomwolf's avatar
thomwolf committed
205
        if args.local_rank in [-1, 0]:
thomwolf's avatar
fix  
thomwolf committed
206
            tb_writer = SummaryWriter()
samuel.broscheit's avatar
samuel.broscheit committed
207
        # Prepare data loader
208
        train_examples = read_squad_examples(
thomwolf's avatar
thomwolf committed
209
            input_file=args.train_file, is_training=True, version_2_with_negative=args.version_2_with_negative)
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
        cached_train_features_file = args.train_file+'_{0}_{1}_{2}_{3}'.format(
            list(filter(None, args.bert_model.split('/'))).pop(), str(args.max_seq_length), str(args.doc_stride), str(args.max_query_length))
        try:
            with open(cached_train_features_file, "rb") as reader:
                train_features = pickle.load(reader)
        except:
            train_features = convert_examples_to_features(
                examples=train_examples,
                tokenizer=tokenizer,
                max_seq_length=args.max_seq_length,
                doc_stride=args.doc_stride,
                max_query_length=args.max_query_length,
                is_training=True)
            if args.local_rank == -1 or torch.distributed.get_rank() == 0:
                logger.info("  Saving train features into cached file %s", cached_train_features_file)
                with open(cached_train_features_file, "wb") as writer:
                    pickle.dump(train_features, writer)
thomwolf's avatar
thomwolf committed
227

228
229
230
231
232
233
234
235
236
237
238
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
        all_start_positions = torch.tensor([f.start_position for f in train_features], dtype=torch.long)
        all_end_positions = torch.tensor([f.end_position for f in train_features], dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                                   all_start_positions, all_end_positions)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
thomwolf's avatar
thomwolf committed
239

240
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
241
        num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
242
243
        # if args.local_rank != -1:
        #     num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
244

samuel.broscheit's avatar
samuel.broscheit committed
245
        # Prepare optimizer
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
        param_optimizer = list(model.named_parameters())

        # hack to remove pooler, which is not used
        # thus it produce None grad that break apex
        param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]

        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [
            {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
            {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
            ]

        if args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
            warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
                                                 t_total=num_train_optimization_steps)
275
        else:
276
277
278
279
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)
thomwolf's avatar
thomwolf committed
280

samuel.broscheit's avatar
samuel.broscheit committed
281
282
        global_step = 0

283
284
285
286
        logger.info("***** Running training *****")
        logger.info("  Num orig examples = %d", len(train_examples))
        logger.info("  Num split examples = %d", len(train_features))
        logger.info("  Batch size = %d", args.train_batch_size)
287
        logger.info("  Num steps = %d", num_train_optimization_steps)
288
289

        model.train()
thomwolf's avatar
thomwolf committed
290
        for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
291
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
thomwolf's avatar
thomwolf committed
292
293
                if n_gpu == 1:
                    batch = tuple(t.to(device) for t in batch) # multi-gpu does scattering it-self
thomwolf's avatar
thomwolf committed
294
                input_ids, input_mask, segment_ids, start_positions, end_positions = batch
295
                loss = model(input_ids, segment_ids, input_mask, start_positions, end_positions)
thomwolf's avatar
thomwolf committed
296
297
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
298
299
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
300
301
302
303
304

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
thomwolf's avatar
thomwolf committed
305
                if (step + 1) % args.gradient_accumulation_steps == 0:
306
307
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
thomwolf's avatar
thomwolf committed
308
                        # if args.fp16 is False, BertAdam is used and handles this automatically
309
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
310
311
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
312
313
                    optimizer.step()
                    optimizer.zero_grad()
thomwolf's avatar
thomwolf committed
314
                    global_step += 1
315
                    if args.local_rank in [-1, 0]:
thomwolf's avatar
thomwolf committed
316
317
                        if not args.fp16:
                            tb_writer.add_scalar('lr', optimizer.get_lr()[0], global_step)
318
                        tb_writer.add_scalar('loss', loss.item(), global_step)
319

320
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
321
        # Save a trained model, configuration and tokenizer
322
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
323
324

        # If we save using the predefined names, we can load using `from_pretrained`
325
326
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
327
328
329

        torch.save(model_to_save.state_dict(), output_model_file)
        model_to_save.config.to_json_file(output_config_file)
330
        tokenizer.save_vocabulary(args.output_dir)
331

332
333
        # Load a trained model and vocabulary that you have fine-tuned
        model = BertForQuestionAnswering.from_pretrained(args.output_dir)
334
        tokenizer = BertTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
thomwolf's avatar
thomwolf committed
335
336
337
338

        # Good practice: save your training arguments together with the trained model
        output_args_file = os.path.join(args.output_dir, 'training_args.bin')
        torch.save(args, output_args_file)
339
340
    else:
        model = BertForQuestionAnswering.from_pretrained(args.bert_model)
341

342
    model.to(device)
343

344
    if args.do_predict and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
345
        eval_examples = read_squad_examples(
thomwolf's avatar
thomwolf committed
346
            input_file=args.predict_file, is_training=False, version_2_with_negative=args.version_2_with_negative)
347
348
349
        eval_features = convert_examples_to_features(
            examples=eval_examples,
            tokenizer=tokenizer,
350
351
352
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
353
354
            is_training=False)

355
356
357
358
359
360
361
362
363
364
        logger.info("***** Running predictions *****")
        logger.info("  Num orig examples = %d", len(eval_examples))
        logger.info("  Num split examples = %d", len(eval_features))
        logger.info("  Batch size = %d", args.predict_batch_size)

        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
        all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index)
365
366
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
367
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.predict_batch_size)
368

369
        model.eval()
370
        all_results = []
thomwolf's avatar
thomwolf committed
371
        logger.info("Start evaluating")
372
        for input_ids, input_mask, segment_ids, example_indices in tqdm(eval_dataloader, desc="Evaluating", disable=args.local_rank not in [-1, 0]):
373
            if len(all_results) % 1000 == 0:
374
375
                logger.info("Processing example: %d" % (len(all_results)))
            input_ids = input_ids.to(device)
thomwolf's avatar
thomwolf committed
376
            input_mask = input_mask.to(device)
377
            segment_ids = segment_ids.to(device)
378
379
380
381
382
383
384
385
386
387
            with torch.no_grad():
                batch_start_logits, batch_end_logits = model(input_ids, segment_ids, input_mask)
            for i, example_index in enumerate(example_indices):
                start_logits = batch_start_logits[i].detach().cpu().tolist()
                end_logits = batch_end_logits[i].detach().cpu().tolist()
                eval_feature = eval_features[example_index.item()]
                unique_id = int(eval_feature.unique_id)
                all_results.append(RawResult(unique_id=unique_id,
                                             start_logits=start_logits,
                                             end_logits=end_logits))
388
389
        output_prediction_file = os.path.join(args.output_dir, "predictions.json")
        output_nbest_file = os.path.join(args.output_dir, "nbest_predictions.json")
thomwolf's avatar
thomwolf committed
390
        output_null_log_odds_file = os.path.join(args.output_dir, "null_odds.json")
391
        write_predictions(eval_examples, eval_features, all_results,
392
393
                          args.n_best_size, args.max_answer_length,
                          args.do_lower_case, output_prediction_file,
thomwolf's avatar
thomwolf committed
394
395
                          output_nbest_file, output_null_log_odds_file, args.verbose_logging,
                          args.version_2_with_negative, args.null_score_diff_threshold)
thomwolf's avatar
thomwolf committed
396
397
398


if __name__ == "__main__":
399
    main()