run_language_modeling.py 11.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
"""
17
18
19
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, CTRL, BERT, RoBERTa, XLNet).
GPT, GPT-2 and CTRL are fine-tuned using a causal language modeling (CLM) loss. BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss. XLNet is fine-tuned using a permutation language modeling (PLM) loss.
20
"""
21
22
23


import logging
Julien Chaumond's avatar
Julien Chaumond committed
24
import math
25
import os
Julien Chaumond's avatar
Julien Chaumond committed
26
from dataclasses import dataclass, field
27
from glob import glob
Julien Chaumond's avatar
Julien Chaumond committed
28
from typing import Optional
29

30
31
from torch.utils.data import ConcatDataset

32
from transformers import (
Julien Chaumond's avatar
Julien Chaumond committed
33
    CONFIG_MAPPING,
34
35
36
37
    MODEL_WITH_LM_HEAD_MAPPING,
    AutoConfig,
    AutoModelWithLMHead,
    AutoTokenizer,
Julien Chaumond's avatar
Julien Chaumond committed
38
    DataCollatorForLanguageModeling,
39
    DataCollatorForPermutationLanguageModeling,
Julien Chaumond's avatar
Julien Chaumond committed
40
41
    HfArgumentParser,
    LineByLineTextDataset,
42
    PreTrainedTokenizer,
Julien Chaumond's avatar
Julien Chaumond committed
43
44
45
46
    TextDataset,
    Trainer,
    TrainingArguments,
    set_seed,
47
)
48

49

50
logger = logging.getLogger(__name__)
51
52


53
54
MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
55
56


Julien Chaumond's avatar
Julien Chaumond committed
57
58
59
60
61
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """
62

Julien Chaumond's avatar
Julien Chaumond committed
63
64
65
66
    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
            "help": "The model checkpoint for weights initialization. Leave None if you want to train a model from scratch."
67
68
        },
    )
Julien Chaumond's avatar
Julien Chaumond committed
69
70
71
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
72
    )
Julien Chaumond's avatar
Julien Chaumond committed
73
74
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
75
    )
Julien Chaumond's avatar
Julien Chaumond committed
76
77
78
79
80
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
81
    )
82
83


Julien Chaumond's avatar
Julien Chaumond committed
84
85
86
87
88
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
89

Julien Chaumond's avatar
Julien Chaumond committed
90
91
    train_data_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a text file)."}
92
    )
93
    train_data_files: Optional[str] = field(
sgugger's avatar
sgugger committed
94
95
        default=None,
        metadata={
96
            "help": "The input training data files (multiple files in glob format). "
sgugger's avatar
sgugger committed
97
98
            "Very often splitting large files to smaller files can prevent tokenizer going out of memory"
        },
99
    )
Julien Chaumond's avatar
Julien Chaumond committed
100
    eval_data_file: Optional[str] = field(
101
        default=None,
Julien Chaumond's avatar
Julien Chaumond committed
102
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
Julien Chaumond's avatar
Julien Chaumond committed
103
    )
Julien Chaumond's avatar
Julien Chaumond committed
104
105
106
    line_by_line: bool = field(
        default=False,
        metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
107
108
    )

Julien Chaumond's avatar
Julien Chaumond committed
109
110
    mlm: bool = field(
        default=False, metadata={"help": "Train with masked-language modeling loss instead of language modeling."}
111
    )
Julien Chaumond's avatar
Julien Chaumond committed
112
113
    mlm_probability: float = field(
        default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
114
    )
115
116
117
118
119
120
121
122
123
    plm_probability: float = field(
        default=1 / 6,
        metadata={
            "help": "Ratio of length of a span of masked tokens to surrounding context length for permutation language modeling."
        },
    )
    max_span_length: int = field(
        default=5, metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."}
    )
124

Julien Chaumond's avatar
Julien Chaumond committed
125
    block_size: int = field(
126
        default=-1,
Julien Chaumond's avatar
Julien Chaumond committed
127
128
129
130
131
        metadata={
            "help": "Optional input sequence length after tokenization."
            "The training dataset will be truncated in block of this size for training."
            "Default to the model max input length for single sentence inputs (take into account special tokens)."
        },
132
    )
Julien Chaumond's avatar
Julien Chaumond committed
133
134
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
135
136
137
    )


138
139
140
141
142
143
def get_dataset(
    args: DataTrainingArguments,
    tokenizer: PreTrainedTokenizer,
    evaluate: bool = False,
    cache_dir: Optional[str] = None,
):
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    def _dataset(file_path):
        if args.line_by_line:
            return LineByLineTextDataset(tokenizer=tokenizer, file_path=file_path, block_size=args.block_size)
        else:
            return TextDataset(
                tokenizer=tokenizer,
                file_path=file_path,
                block_size=args.block_size,
                overwrite_cache=args.overwrite_cache,
                cache_dir=cache_dir,
            )

    if evaluate:
        return _dataset(args.eval_data_file)
    elif args.train_data_files:
        return ConcatDataset([_dataset(f) for f in glob(args.train_data_files)])
Julien Chaumond's avatar
Julien Chaumond committed
160
    else:
161
        return _dataset(args.train_data_file)
162

163

Julien Chaumond's avatar
Julien Chaumond committed
164
165
166
167
168
169
170
171
172
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    if data_args.eval_data_file is None and training_args.do_eval:
173
174
175
176
177
178
        raise ValueError(
            "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
            "or remove the --do_eval argument."
        )

    if (
Julien Chaumond's avatar
Julien Chaumond committed
179
180
181
182
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
183
184
    ):
        raise ValueError(
Julien Chaumond's avatar
Julien Chaumond committed
185
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
186
        )
187
188

    # Setup logging
189
190
191
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
Julien Chaumond's avatar
Julien Chaumond committed
192
        level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
193
194
195
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
Julien Chaumond's avatar
Julien Chaumond committed
196
197
198
199
200
        training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
        bool(training_args.local_rank != -1),
        training_args.fp16,
201
    )
Julien Chaumond's avatar
Julien Chaumond committed
202
    logger.info("Training/evaluation parameters %s", training_args)
203
204

    # Set seed
Julien Chaumond's avatar
Julien Chaumond committed
205
    set_seed(training_args.seed)
206
207

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
208
209
210
211
212
213
214
215
216
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    if model_args.config_name:
        config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
217
    else:
Julien Chaumond's avatar
Julien Chaumond committed
218
219
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")
220

Julien Chaumond's avatar
Julien Chaumond committed
221
222
223
224
    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, cache_dir=model_args.cache_dir)
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
225
    else:
226
        raise ValueError(
227
228
            "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another script, save it,"
            "and load it from here, using --tokenizer_name"
229
230
        )

Julien Chaumond's avatar
Julien Chaumond committed
231
    if model_args.model_name_or_path:
232
        model = AutoModelWithLMHead.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
233
234
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
235
            config=config,
Julien Chaumond's avatar
Julien Chaumond committed
236
            cache_dir=model_args.cache_dir,
237
238
239
        )
    else:
        logger.info("Training new model from scratch")
240
        model = AutoModelWithLMHead.from_config(config)
241

Julien Chaumond's avatar
Julien Chaumond committed
242
    model.resize_token_embeddings(len(tokenizer))
243

Julien Chaumond's avatar
Julien Chaumond committed
244
245
    if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm:
        raise ValueError(
246
247
            "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the"
            "--mlm flag (masked language modeling)."
Julien Chaumond's avatar
Julien Chaumond committed
248
        )
249

Julien Chaumond's avatar
Julien Chaumond committed
250
251
252
253
254
    if data_args.block_size <= 0:
        data_args.block_size = tokenizer.max_len
        # Our input block size will be the max possible for the model
    else:
        data_args.block_size = min(data_args.block_size, tokenizer.max_len)
255

Julien Chaumond's avatar
Julien Chaumond committed
256
    # Get datasets
257

258
259
260
261
262
263
264
265
    train_dataset = (
        get_dataset(data_args, tokenizer=tokenizer, cache_dir=model_args.cache_dir) if training_args.do_train else None
    )
    eval_dataset = (
        get_dataset(data_args, tokenizer=tokenizer, evaluate=True, cache_dir=model_args.cache_dir)
        if training_args.do_eval
        else None
    )
266
267
    if config.model_type == "xlnet":
        data_collator = DataCollatorForPermutationLanguageModeling(
Lysandre's avatar
Lysandre committed
268
269
270
            tokenizer=tokenizer,
            plm_probability=data_args.plm_probability,
            max_span_length=data_args.max_span_length,
271
272
273
274
275
        )
    else:
        data_collator = DataCollatorForLanguageModeling(
            tokenizer=tokenizer, mlm=data_args.mlm, mlm_probability=data_args.mlm_probability
        )
276

Julien Chaumond's avatar
Julien Chaumond committed
277
278
279
280
281
282
283
284
285
    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        data_collator=data_collator,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        prediction_loss_only=True,
    )
286

Julien Chaumond's avatar
Julien Chaumond committed
287
288
289
290
291
292
293
294
295
    # Training
    if training_args.do_train:
        model_path = (
            model_args.model_name_or_path
            if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path)
            else None
        )
        trainer.train(model_path=model_path)
        trainer.save_model()
296
297
298
299
        # For convenience, we also re-save the tokenizer to the same directory,
        # so that you can share your model easily on huggingface.co/models =)
        if trainer.is_world_master():
            tokenizer.save_pretrained(training_args.output_dir)
300

Julien Chaumond's avatar
Julien Chaumond committed
301
302
    # Evaluation
    results = {}
303
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
304
        logger.info("*** Evaluate ***")
305

Julien Chaumond's avatar
Julien Chaumond committed
306
        eval_output = trainer.evaluate()
307

308
        perplexity = math.exp(eval_output["eval_loss"])
Julien Chaumond's avatar
Julien Chaumond committed
309
        result = {"perplexity": perplexity}
310

Julien Chaumond's avatar
Julien Chaumond committed
311
        output_eval_file = os.path.join(training_args.output_dir, "eval_results_lm.txt")
312
313
314
315
316
317
        if trainer.is_world_master():
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
                for key in sorted(result.keys()):
                    logger.info("  %s = %s", key, str(result[key]))
                    writer.write("%s = %s\n" % (key, str(result[key])))
318

Julien Chaumond's avatar
Julien Chaumond committed
319
        results.update(result)
320
321
322
323

    return results


324
325
326
327
328
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


329
if __name__ == "__main__":
altsoph's avatar
altsoph committed
330
    main()