run_language_modeling.py 10.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
"""
LysandreJik's avatar
LysandreJik committed
17
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
18
19
20
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""
21
22
23


import logging
Julien Chaumond's avatar
Julien Chaumond committed
24
import math
25
import os
Julien Chaumond's avatar
Julien Chaumond committed
26
27
from dataclasses import dataclass, field
from typing import Optional
28

29
from transformers import (
Julien Chaumond's avatar
Julien Chaumond committed
30
    CONFIG_MAPPING,
31
32
33
34
    MODEL_WITH_LM_HEAD_MAPPING,
    AutoConfig,
    AutoModelWithLMHead,
    AutoTokenizer,
Julien Chaumond's avatar
Julien Chaumond committed
35
36
37
    DataCollatorForLanguageModeling,
    HfArgumentParser,
    LineByLineTextDataset,
38
    PreTrainedTokenizer,
Julien Chaumond's avatar
Julien Chaumond committed
39
40
41
42
    TextDataset,
    Trainer,
    TrainingArguments,
    set_seed,
43
)
44

45

46
logger = logging.getLogger(__name__)
47
48


49
50
MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
51
52


Julien Chaumond's avatar
Julien Chaumond committed
53
54
55
56
57
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """
58

Julien Chaumond's avatar
Julien Chaumond committed
59
60
61
62
    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
            "help": "The model checkpoint for weights initialization. Leave None if you want to train a model from scratch."
63
64
        },
    )
Julien Chaumond's avatar
Julien Chaumond committed
65
66
67
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
68
    )
Julien Chaumond's avatar
Julien Chaumond committed
69
70
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
71
    )
Julien Chaumond's avatar
Julien Chaumond committed
72
73
74
75
76
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
77
    )
78
79


Julien Chaumond's avatar
Julien Chaumond committed
80
81
82
83
84
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
85

Julien Chaumond's avatar
Julien Chaumond committed
86
87
    train_data_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a text file)."}
88
    )
Julien Chaumond's avatar
Julien Chaumond committed
89
    eval_data_file: Optional[str] = field(
90
        default=None,
Julien Chaumond's avatar
Julien Chaumond committed
91
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
Julien Chaumond's avatar
Julien Chaumond committed
92
    )
Julien Chaumond's avatar
Julien Chaumond committed
93
94
95
    line_by_line: bool = field(
        default=False,
        metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
96
97
    )

Julien Chaumond's avatar
Julien Chaumond committed
98
99
    mlm: bool = field(
        default=False, metadata={"help": "Train with masked-language modeling loss instead of language modeling."}
100
    )
Julien Chaumond's avatar
Julien Chaumond committed
101
102
    mlm_probability: float = field(
        default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
103
104
    )

Julien Chaumond's avatar
Julien Chaumond committed
105
    block_size: int = field(
106
        default=-1,
Julien Chaumond's avatar
Julien Chaumond committed
107
108
109
110
111
        metadata={
            "help": "Optional input sequence length after tokenization."
            "The training dataset will be truncated in block of this size for training."
            "Default to the model max input length for single sentence inputs (take into account special tokens)."
        },
112
    )
Julien Chaumond's avatar
Julien Chaumond committed
113
114
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
115
116
117
    )


Julien Chaumond's avatar
Julien Chaumond committed
118
def get_dataset(args: DataTrainingArguments, tokenizer: PreTrainedTokenizer, evaluate=False):
Julien Chaumond's avatar
Julien Chaumond committed
119
120
    file_path = args.eval_data_file if evaluate else args.train_data_file
    if args.line_by_line:
121
        return LineByLineTextDataset(tokenizer=tokenizer, file_path=file_path, block_size=args.block_size)
Julien Chaumond's avatar
Julien Chaumond committed
122
    else:
123
124
125
        return TextDataset(
            tokenizer=tokenizer, file_path=file_path, block_size=args.block_size, overwrite_cache=args.overwrite_cache
        )
126

127

Julien Chaumond's avatar
Julien Chaumond committed
128
129
130
131
132
133
134
135
136
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    if data_args.eval_data_file is None and training_args.do_eval:
137
138
139
140
141
142
        raise ValueError(
            "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
            "or remove the --do_eval argument."
        )

    if (
Julien Chaumond's avatar
Julien Chaumond committed
143
144
145
146
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
147
148
    ):
        raise ValueError(
Julien Chaumond's avatar
Julien Chaumond committed
149
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
150
        )
151
152

    # Setup logging
153
154
155
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
Julien Chaumond's avatar
Julien Chaumond committed
156
        level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
157
158
159
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
Julien Chaumond's avatar
Julien Chaumond committed
160
161
162
163
164
        training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
        bool(training_args.local_rank != -1),
        training_args.fp16,
165
    )
Julien Chaumond's avatar
Julien Chaumond committed
166
    logger.info("Training/evaluation parameters %s", training_args)
167
168

    # Set seed
Julien Chaumond's avatar
Julien Chaumond committed
169
    set_seed(training_args.seed)
170
171

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
172
173
174
175
176
177
178
179
180
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    if model_args.config_name:
        config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
181
    else:
Julien Chaumond's avatar
Julien Chaumond committed
182
183
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")
184

Julien Chaumond's avatar
Julien Chaumond committed
185
186
187
188
    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, cache_dir=model_args.cache_dir)
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
189
    else:
190
        raise ValueError(
191
192
            "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another script, save it,"
            "and load it from here, using --tokenizer_name"
193
194
        )

Julien Chaumond's avatar
Julien Chaumond committed
195
    if model_args.model_name_or_path:
196
        model = AutoModelWithLMHead.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
197
198
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
199
            config=config,
Julien Chaumond's avatar
Julien Chaumond committed
200
            cache_dir=model_args.cache_dir,
201
202
203
        )
    else:
        logger.info("Training new model from scratch")
204
        model = AutoModelWithLMHead.from_config(config)
205

Julien Chaumond's avatar
Julien Chaumond committed
206
    model.resize_token_embeddings(len(tokenizer))
207

Julien Chaumond's avatar
Julien Chaumond committed
208
209
210
211
212
    if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm:
        raise ValueError(
            "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the --mlm "
            "flag (masked language modeling)."
        )
213

Julien Chaumond's avatar
Julien Chaumond committed
214
215
216
217
218
    if data_args.block_size <= 0:
        data_args.block_size = tokenizer.max_len
        # Our input block size will be the max possible for the model
    else:
        data_args.block_size = min(data_args.block_size, tokenizer.max_len)
219

Julien Chaumond's avatar
Julien Chaumond committed
220
    # Get datasets
221

Julien Chaumond's avatar
Julien Chaumond committed
222
223
    train_dataset = get_dataset(data_args, tokenizer=tokenizer) if training_args.do_train else None
    eval_dataset = get_dataset(data_args, tokenizer=tokenizer, evaluate=True) if training_args.do_eval else None
Julien Chaumond's avatar
Julien Chaumond committed
224
225
226
    data_collator = DataCollatorForLanguageModeling(
        tokenizer=tokenizer, mlm=data_args.mlm, mlm_probability=data_args.mlm_probability
    )
227

Julien Chaumond's avatar
Julien Chaumond committed
228
229
230
231
232
233
234
235
236
    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        data_collator=data_collator,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        prediction_loss_only=True,
    )
237

Julien Chaumond's avatar
Julien Chaumond committed
238
239
240
241
242
243
244
245
246
    # Training
    if training_args.do_train:
        model_path = (
            model_args.model_name_or_path
            if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path)
            else None
        )
        trainer.train(model_path=model_path)
        trainer.save_model()
247
248
249
250
        # For convenience, we also re-save the tokenizer to the same directory,
        # so that you can share your model easily on huggingface.co/models =)
        if trainer.is_world_master():
            tokenizer.save_pretrained(training_args.output_dir)
251

Julien Chaumond's avatar
Julien Chaumond committed
252
253
    # Evaluation
    results = {}
254
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
255
        logger.info("*** Evaluate ***")
256

Julien Chaumond's avatar
Julien Chaumond committed
257
        eval_output = trainer.evaluate()
258

259
        perplexity = math.exp(eval_output["eval_loss"])
Julien Chaumond's avatar
Julien Chaumond committed
260
        result = {"perplexity": perplexity}
261

Julien Chaumond's avatar
Julien Chaumond committed
262
        output_eval_file = os.path.join(training_args.output_dir, "eval_results_lm.txt")
263
264
265
266
267
268
        if trainer.is_world_master():
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
                for key in sorted(result.keys()):
                    logger.info("  %s = %s", key, str(result[key]))
                    writer.write("%s = %s\n" % (key, str(result[key])))
269

Julien Chaumond's avatar
Julien Chaumond committed
270
        results.update(result)
271
272
273
274

    return results


275
276
277
278
279
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


280
if __name__ == "__main__":
altsoph's avatar
altsoph committed
281
    main()