run_language_modeling.py 11.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
"""
17
18
19
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, CTRL, BERT, RoBERTa, XLNet).
GPT, GPT-2 and CTRL are fine-tuned using a causal language modeling (CLM) loss. BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss. XLNet is fine-tuned using a permutation language modeling (PLM) loss.
20
"""
21
22
23


import logging
Julien Chaumond's avatar
Julien Chaumond committed
24
import math
25
import os
Julien Chaumond's avatar
Julien Chaumond committed
26
from dataclasses import dataclass, field
27
from glob import glob
Julien Chaumond's avatar
Julien Chaumond committed
28
from typing import Optional
29

30
31
from torch.utils.data import ConcatDataset

32
from transformers import (
Julien Chaumond's avatar
Julien Chaumond committed
33
    CONFIG_MAPPING,
34
35
36
37
    MODEL_WITH_LM_HEAD_MAPPING,
    AutoConfig,
    AutoModelWithLMHead,
    AutoTokenizer,
Julien Chaumond's avatar
Julien Chaumond committed
38
    DataCollatorForLanguageModeling,
39
    DataCollatorForPermutationLanguageModeling,
Julien Chaumond's avatar
Julien Chaumond committed
40
41
    HfArgumentParser,
    LineByLineTextDataset,
42
    PreTrainedTokenizer,
Julien Chaumond's avatar
Julien Chaumond committed
43
44
45
46
    TextDataset,
    Trainer,
    TrainingArguments,
    set_seed,
47
)
48

49

50
logger = logging.getLogger(__name__)
51
52


53
54
MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
55
56


Julien Chaumond's avatar
Julien Chaumond committed
57
58
59
60
61
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """
62

Julien Chaumond's avatar
Julien Chaumond committed
63
64
65
66
    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
            "help": "The model checkpoint for weights initialization. Leave None if you want to train a model from scratch."
67
68
        },
    )
Julien Chaumond's avatar
Julien Chaumond committed
69
70
71
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
72
    )
Julien Chaumond's avatar
Julien Chaumond committed
73
74
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
75
    )
Julien Chaumond's avatar
Julien Chaumond committed
76
77
78
79
80
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
81
    )
82
83


Julien Chaumond's avatar
Julien Chaumond committed
84
85
86
87
88
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
89

Julien Chaumond's avatar
Julien Chaumond committed
90
91
    train_data_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a text file)."}
92
    )
93
94
95
96
97
98
    train_data_files: Optional[str] = field(
        default=None, metadata={
            "help": "The input training data files (multiple files in glob format). "
                    "Very often splitting large files to smaller files can prevent tokenizer going out of memory"
        }
    )
Julien Chaumond's avatar
Julien Chaumond committed
99
    eval_data_file: Optional[str] = field(
100
        default=None,
Julien Chaumond's avatar
Julien Chaumond committed
101
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
Julien Chaumond's avatar
Julien Chaumond committed
102
    )
Julien Chaumond's avatar
Julien Chaumond committed
103
104
105
    line_by_line: bool = field(
        default=False,
        metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
106
107
    )

Julien Chaumond's avatar
Julien Chaumond committed
108
109
    mlm: bool = field(
        default=False, metadata={"help": "Train with masked-language modeling loss instead of language modeling."}
110
    )
Julien Chaumond's avatar
Julien Chaumond committed
111
112
    mlm_probability: float = field(
        default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
113
    )
114
115
116
117
118
119
120
121
122
    plm_probability: float = field(
        default=1 / 6,
        metadata={
            "help": "Ratio of length of a span of masked tokens to surrounding context length for permutation language modeling."
        },
    )
    max_span_length: int = field(
        default=5, metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."}
    )
123

Julien Chaumond's avatar
Julien Chaumond committed
124
    block_size: int = field(
125
        default=-1,
Julien Chaumond's avatar
Julien Chaumond committed
126
127
128
129
130
        metadata={
            "help": "Optional input sequence length after tokenization."
            "The training dataset will be truncated in block of this size for training."
            "Default to the model max input length for single sentence inputs (take into account special tokens)."
        },
131
    )
Julien Chaumond's avatar
Julien Chaumond committed
132
133
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
134
135
136
    )


137
138
139
140
141
142
def get_dataset(
    args: DataTrainingArguments,
    tokenizer: PreTrainedTokenizer,
    evaluate: bool = False,
    cache_dir: Optional[str] = None,
):
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    def _dataset(file_path):
        if args.line_by_line:
            return LineByLineTextDataset(tokenizer=tokenizer, file_path=file_path, block_size=args.block_size)
        else:
            return TextDataset(
                tokenizer=tokenizer,
                file_path=file_path,
                block_size=args.block_size,
                overwrite_cache=args.overwrite_cache,
                cache_dir=cache_dir,
            )

    if evaluate:
        return _dataset(args.eval_data_file)
    elif args.train_data_files:
        return ConcatDataset([_dataset(f) for f in glob(args.train_data_files)])
Julien Chaumond's avatar
Julien Chaumond committed
159
    else:
160
        return _dataset(args.train_data_file)
161

162

Julien Chaumond's avatar
Julien Chaumond committed
163
164
165
166
167
168
169
170
171
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    if data_args.eval_data_file is None and training_args.do_eval:
172
173
174
175
176
177
        raise ValueError(
            "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
            "or remove the --do_eval argument."
        )

    if (
Julien Chaumond's avatar
Julien Chaumond committed
178
179
180
181
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
182
183
    ):
        raise ValueError(
Julien Chaumond's avatar
Julien Chaumond committed
184
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
185
        )
186
187

    # Setup logging
188
189
190
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
Julien Chaumond's avatar
Julien Chaumond committed
191
        level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
192
193
194
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
Julien Chaumond's avatar
Julien Chaumond committed
195
196
197
198
199
        training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
        bool(training_args.local_rank != -1),
        training_args.fp16,
200
    )
Julien Chaumond's avatar
Julien Chaumond committed
201
    logger.info("Training/evaluation parameters %s", training_args)
202
203

    # Set seed
Julien Chaumond's avatar
Julien Chaumond committed
204
    set_seed(training_args.seed)
205
206

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
207
208
209
210
211
212
213
214
215
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    if model_args.config_name:
        config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
216
    else:
Julien Chaumond's avatar
Julien Chaumond committed
217
218
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")
219

Julien Chaumond's avatar
Julien Chaumond committed
220
221
222
223
    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, cache_dir=model_args.cache_dir)
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
224
    else:
225
        raise ValueError(
226
227
            "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another script, save it,"
            "and load it from here, using --tokenizer_name"
228
229
        )

Julien Chaumond's avatar
Julien Chaumond committed
230
    if model_args.model_name_or_path:
231
        model = AutoModelWithLMHead.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
232
233
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
234
            config=config,
Julien Chaumond's avatar
Julien Chaumond committed
235
            cache_dir=model_args.cache_dir,
236
237
238
        )
    else:
        logger.info("Training new model from scratch")
239
        model = AutoModelWithLMHead.from_config(config)
240

Julien Chaumond's avatar
Julien Chaumond committed
241
    model.resize_token_embeddings(len(tokenizer))
242

Julien Chaumond's avatar
Julien Chaumond committed
243
244
    if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm:
        raise ValueError(
245
246
            "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the"
            "--mlm flag (masked language modeling)."
Julien Chaumond's avatar
Julien Chaumond committed
247
        )
248

Julien Chaumond's avatar
Julien Chaumond committed
249
250
251
252
253
    if data_args.block_size <= 0:
        data_args.block_size = tokenizer.max_len
        # Our input block size will be the max possible for the model
    else:
        data_args.block_size = min(data_args.block_size, tokenizer.max_len)
254

Julien Chaumond's avatar
Julien Chaumond committed
255
    # Get datasets
256

257
258
259
260
261
262
263
264
    train_dataset = (
        get_dataset(data_args, tokenizer=tokenizer, cache_dir=model_args.cache_dir) if training_args.do_train else None
    )
    eval_dataset = (
        get_dataset(data_args, tokenizer=tokenizer, evaluate=True, cache_dir=model_args.cache_dir)
        if training_args.do_eval
        else None
    )
265
266
    if config.model_type == "xlnet":
        data_collator = DataCollatorForPermutationLanguageModeling(
Lysandre's avatar
Lysandre committed
267
268
269
            tokenizer=tokenizer,
            plm_probability=data_args.plm_probability,
            max_span_length=data_args.max_span_length,
270
271
272
273
274
        )
    else:
        data_collator = DataCollatorForLanguageModeling(
            tokenizer=tokenizer, mlm=data_args.mlm, mlm_probability=data_args.mlm_probability
        )
275

Julien Chaumond's avatar
Julien Chaumond committed
276
277
278
279
280
281
282
283
284
    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        data_collator=data_collator,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        prediction_loss_only=True,
    )
285

Julien Chaumond's avatar
Julien Chaumond committed
286
287
288
289
290
291
292
293
294
    # Training
    if training_args.do_train:
        model_path = (
            model_args.model_name_or_path
            if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path)
            else None
        )
        trainer.train(model_path=model_path)
        trainer.save_model()
295
296
297
298
        # For convenience, we also re-save the tokenizer to the same directory,
        # so that you can share your model easily on huggingface.co/models =)
        if trainer.is_world_master():
            tokenizer.save_pretrained(training_args.output_dir)
299

Julien Chaumond's avatar
Julien Chaumond committed
300
301
    # Evaluation
    results = {}
302
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
303
        logger.info("*** Evaluate ***")
304

Julien Chaumond's avatar
Julien Chaumond committed
305
        eval_output = trainer.evaluate()
306

307
        perplexity = math.exp(eval_output["eval_loss"])
Julien Chaumond's avatar
Julien Chaumond committed
308
        result = {"perplexity": perplexity}
309

Julien Chaumond's avatar
Julien Chaumond committed
310
        output_eval_file = os.path.join(training_args.output_dir, "eval_results_lm.txt")
311
312
313
314
315
316
        if trainer.is_world_master():
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
                for key in sorted(result.keys()):
                    logger.info("  %s = %s", key, str(result[key]))
                    writer.write("%s = %s\n" % (key, str(result[key])))
317

Julien Chaumond's avatar
Julien Chaumond committed
318
        results.update(result)
319
320
321
322

    return results


323
324
325
326
327
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


328
if __name__ == "__main__":
altsoph's avatar
altsoph committed
329
    main()