run_glue.py 23.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""

from __future__ import absolute_import, division, print_function

import argparse
thomwolf's avatar
thomwolf committed
21
import glob
thomwolf's avatar
thomwolf committed
22
23
24
25
26
27
28
29
30
import logging
import os
import random

import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
from torch.utils.data.distributed import DistributedSampler
thomwolf's avatar
thomwolf committed
31
from tensorboardX import SummaryWriter
thomwolf's avatar
thomwolf committed
32
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
33

thomwolf's avatar
thomwolf committed
34
35
36
37
38
from pytorch_transformers import (WEIGHTS_NAME, BertConfig,
                                  BertForSequenceClassification, BertTokenizer,
                                  XLMConfig, XLMForSequenceClassification,
                                  XLMTokenizer, XLNetConfig,
                                  XLNetForSequenceClassification,
thomwolf's avatar
thomwolf committed
39
                                  XLNetTokenizer)
thomwolf's avatar
thomwolf committed
40
41
42

from pytorch_transformers import AdamW, WarmupLinearSchedule

thomwolf's avatar
thomwolf committed
43
44
from utils_glue import (compute_metrics, convert_examples_to_features,
                        output_modes, processors)
thomwolf's avatar
thomwolf committed
45
46
47

logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
48
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig, XLMConfig)), ())
49
50

MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
51
52
53
    'bert': (BertConfig, BertForSequenceClassification, BertTokenizer),
    'xlnet': (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
    'xlm': (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
54
}
thomwolf's avatar
thomwolf committed
55

thomwolf's avatar
thomwolf committed
56
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
57
58
59
60
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

thomwolf's avatar
thomwolf committed
61
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
62
63
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
thomwolf's avatar
thomwolf committed
64

thomwolf's avatar
thomwolf committed
65
    if args.max_steps > 0:
thomwolf's avatar
thomwolf committed
66
        t_total = args.max_steps
thomwolf's avatar
thomwolf committed
67
68
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
thomwolf's avatar
thomwolf committed
69
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
70

thomwolf's avatar
thomwolf committed
71
    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
72
    no_decay = ['bias', 'LayerNorm.weight']
thomwolf's avatar
thomwolf committed
73
    optimizer_grouped_parameters = [
thomwolf's avatar
thomwolf committed
74
75
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
thomwolf's avatar
thomwolf committed
76
        ]
thomwolf's avatar
thomwolf committed
77
78
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
thomwolf's avatar
thomwolf committed
79
80
    if args.fp16:
        try:
thomwolf's avatar
thomwolf committed
81
            from apex import amp
thomwolf's avatar
thomwolf committed
82
83
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
thomwolf's avatar
thomwolf committed
84
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
thomwolf's avatar
thomwolf committed
85
86
87

    # Train!
    logger.info("***** Running training *****")
88
89
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
thomwolf's avatar
thomwolf committed
90
91
92
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                   args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
93
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
thomwolf's avatar
thomwolf committed
94
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
95
96

    global_step = 0
thomwolf's avatar
thomwolf committed
97
    tr_loss, logging_loss = 0.0, 0.0
thomwolf's avatar
thomwolf committed
98
    model.zero_grad()
thomwolf's avatar
thomwolf committed
99
100
    for _ in trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]):
        for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
thomwolf's avatar
thomwolf committed
101
            model.train()
thomwolf's avatar
thomwolf committed
102
            batch = tuple(t.to(args.device) for t in batch)
103
104
            inputs = {'input_ids':      batch[0],
                      'attention_mask': batch[1],
thomwolf's avatar
thomwolf committed
105
                      'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None,  # XLM don't use segment_ids
106
107
                      'labels':         batch[3]}
            ouputs = model(**inputs)
thomwolf's avatar
thomwolf committed
108
            loss = ouputs[0]  # model outputs are always tuple in pytorch-transformers (see doc)
thomwolf's avatar
thomwolf committed
109
110
111
112
113
114

            if args.n_gpu > 1:
                loss = loss.mean() # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

thomwolf's avatar
thomwolf committed
115
116
117
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
thomwolf's avatar
thomwolf committed
118
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
thomwolf's avatar
thomwolf committed
119
120
            else:
                loss.backward()
thomwolf's avatar
thomwolf committed
121
                torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
thomwolf's avatar
thomwolf committed
122
123
124

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
thomwolf's avatar
thomwolf committed
125
                scheduler.step()  # Update learning rate schedule
thomwolf's avatar
thomwolf committed
126
                optimizer.step()
thomwolf's avatar
thomwolf committed
127
                model.zero_grad()
thomwolf's avatar
thomwolf committed
128
                global_step += 1
thomwolf's avatar
thomwolf committed
129

thomwolf's avatar
thomwolf committed
130
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
thomwolf's avatar
thomwolf committed
131
                    # Log metrics
thomwolf's avatar
thomwolf committed
132
133
                    if args.local_rank == -1:  # Only evaluate when single GPU otherwise metrics may not average well
                        results = evaluate(args, model, tokenizer)
thomwolf's avatar
thomwolf committed
134
135
                        for key, value in results.items():
                            tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
thomwolf's avatar
thomwolf committed
136
                    tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
thomwolf's avatar
thomwolf committed
137
138
                    tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
                    logging_loss = tr_loss
thomwolf's avatar
thomwolf committed
139
140
141
142
143
144
145
146
147

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
thomwolf's avatar
thomwolf committed
148
                    logger.info("Saving model checkpoint to %s", output_dir)
thomwolf's avatar
thomwolf committed
149

thomwolf's avatar
thomwolf committed
150
151
152
153
            if args.max_steps > 0 and global_step > args.max_steps:
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            break
thomwolf's avatar
thomwolf committed
154
155
156
157

    return global_step, tr_loss / global_step


thomwolf's avatar
thomwolf committed
158
def evaluate(args, model, tokenizer, prefix=""):
thomwolf's avatar
thomwolf committed
159
160
161
162
163
164
165
166
167
168
169
170
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
    eval_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if args.task_name == "mnli" else (args.output_dir,)

    results = {}
    for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
        eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)

        """ Evaluate the model """
        if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(eval_output_dir)

thomwolf's avatar
thomwolf committed
171
        args.eval_batch_size = args.per_gpu_eval_batch_size * args.n_gpu
thomwolf's avatar
thomwolf committed
172
173
174
175
176
        # Note that DistributedSampler samples randomly
        eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
        eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

        # Eval!
thomwolf's avatar
thomwolf committed
177
        logger.info("***** Running evaluation {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
178
179
180
181
182
183
184
        logger.info("  Num examples = %d", len(eval_dataset))
        logger.info("  Batch size = %d", args.eval_batch_size)
        eval_loss = 0
        nb_eval_steps = 0
        preds = None
        out_label_ids = None
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
thomwolf's avatar
thomwolf committed
185
            model.eval()
thomwolf's avatar
thomwolf committed
186
187
188
189
190
191
192
193
194
195
            batch = tuple(t.to(args.device) for t in batch)

            with torch.no_grad():
                inputs = {'input_ids':      batch[0],
                          'attention_mask': batch[1],
                          'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None,  # XLM don't use segment_ids
                          'labels':         batch[3]}
                outputs = model(**inputs)
                tmp_eval_loss, logits = outputs[:2]

thomwolf's avatar
thomwolf committed
196
                eval_loss += tmp_eval_loss.mean().item()
thomwolf's avatar
thomwolf committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
            nb_eval_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
                out_label_ids = inputs['labels'].detach().cpu().numpy()
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
                out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)

        eval_loss = eval_loss / nb_eval_steps
        if args.output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif args.output_mode == "regression":
            preds = np.squeeze(preds)
        result = compute_metrics(eval_task, preds, out_label_ids)
        results.update(result)

        output_eval_file = os.path.join(eval_output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
thomwolf's avatar
thomwolf committed
215
            logger.info("***** Eval results {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
216
217
218
219
220
221
222
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

    return results


thomwolf's avatar
thomwolf committed
223
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
thomwolf's avatar
thomwolf committed
224
    processor = processors[task]()
225
226
227
228
    output_mode = output_modes[task]
    # Load data features from cache or dataset file
    cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}'.format(
        'dev' if evaluate else 'train',
229
        list(filter(None, args.model_name.split('/'))).pop(),
thomwolf's avatar
thomwolf committed
230
231
        str(args.max_seq_length),
        str(task)))
thomwolf's avatar
thomwolf committed
232
    if os.path.exists(cached_features_file) and not args.overwrite_cache:
thomwolf's avatar
thomwolf committed
233
        logger.info("Loading features from cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
234
235
        features = torch.load(cached_features_file)
    else:
236
237
238
        logger.info("Creating features from dataset file at %s", args.data_dir)
        label_list = processor.get_labels()
        examples = processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
239
        features = convert_examples_to_features(examples, label_list, args.max_seq_length, tokenizer, output_mode,
240
            cls_token_at_end=bool(args.model_type in ['xlnet']),            # xlnet has a cls token at the end
241
            cls_token=tokenizer.cls_token,
242
243
244
245
246
            sep_token=tokenizer.sep_token,
            cls_token_segment_id=2 if args.model_type in ['xlnet'] else 1,
            pad_on_left=bool(args.model_type in ['xlnet']),                 # pad on the left for xlnet
            pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0)
        if args.local_rank in [-1, 0]:
thomwolf's avatar
thomwolf committed
247
            logger.info("Saving features into cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
248
249
            torch.save(features, cached_features_file)

250
251
252
253
254
255
256
257
258
259
260
    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
    if output_mode == "classification":
        all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.long)
    elif output_mode == "regression":
        all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.float)

    dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
    return dataset
thomwolf's avatar
thomwolf committed
261
262


thomwolf's avatar
thomwolf committed
263
264
265
266
267
268
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir", default=None, type=str, required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
269
270
    parser.add_argument("--model_name", default=None, type=str, required=True,
                        help="Bert/XLNet/XLM pre-trained model selected in the list: " + ", ".join(ALL_MODELS))
thomwolf's avatar
thomwolf committed
271
    parser.add_argument("--task_name", default=None, type=str, required=True,
272
                        help="The name of the task to train selected in the list: " + ", ".join(processors.keys()))
thomwolf's avatar
thomwolf committed
273
274
275
276
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")

    ## Other parameters
thomwolf's avatar
thomwolf committed
277
278
279
280
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
thomwolf's avatar
thomwolf committed
281
282
283
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length", default=128, type=int,
284
285
                        help="The maximum total input sequence length after tokenization. Sequences longer "
                             "than this will be truncated, sequences shorter will be padded.")
thomwolf's avatar
thomwolf committed
286
287
288
289
290
291
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")
thomwolf's avatar
thomwolf committed
292
293
294

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
                        help="Batch size per GPU for training.")
thomwolf's avatar
thomwolf committed
295
296
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
                        help="Batch size per GPU for evaluation.")
thomwolf's avatar
thomwolf committed
297
298
299
300
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
thomwolf's avatar
thomwolf committed
301
302
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight deay if we apply some.")
thomwolf's avatar
thomwolf committed
303
304
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
thomwolf's avatar
thomwolf committed
305
306
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
thomwolf's avatar
thomwolf committed
307
308
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
thomwolf's avatar
thomwolf committed
309
310
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
thomwolf's avatar
thomwolf committed
311
312
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")
thomwolf's avatar
thomwolf committed
313

thomwolf's avatar
thomwolf committed
314
    parser.add_argument('--logging_steps', type=int, default=50,
thomwolf's avatar
thomwolf committed
315
                        help="Log every X updates steps.")
thomwolf's avatar
thomwolf committed
316
317
318
319
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
thomwolf's avatar
thomwolf committed
320
321
322
323
    parser.add_argument("--no_cuda", action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
thomwolf's avatar
thomwolf committed
324
325
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
thomwolf's avatar
thomwolf committed
326
327
328
329
    parser.add_argument('--seed', type=int, default=42,
                        help="random seed for initialization")

    parser.add_argument('--fp16', action='store_true',
thomwolf's avatar
thomwolf committed
330
331
332
333
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
thomwolf's avatar
thomwolf committed
334
    parser.add_argument("--local_rank", type=int, default=-1,
thomwolf's avatar
thomwolf committed
335
336
337
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
thomwolf's avatar
thomwolf committed
338
339
    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
340
341
342
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

thomwolf's avatar
thomwolf committed
343
344
345
346
347
348
349
350
351
352
353
    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
354
        args.n_gpu = torch.cuda.device_count()
thomwolf's avatar
thomwolf committed
355
356
357
358
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
359
        args.n_gpu = 1
thomwolf's avatar
thomwolf committed
360
361
362
    args.device = device

    # Setup logging
thomwolf's avatar
thomwolf committed
363
364
365
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
thomwolf's avatar
thomwolf committed
366
367
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
                args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
thomwolf's avatar
thomwolf committed
368
369
370
371
372

    # Setup seeds
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
thomwolf's avatar
thomwolf committed
373
    if args.n_gpu > 0:
thomwolf's avatar
thomwolf committed
374
375
376
        torch.cuda.manual_seed_all(args.seed)

    # Prepare GLUE task
thomwolf's avatar
thomwolf committed
377
378
379
380
381
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
thomwolf's avatar
thomwolf committed
382
383
384
385
386
387
388
389
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        # Make sure only the first process in distributed training will download model & vocab
        torch.distributed.barrier()

thomwolf's avatar
thomwolf committed
390
391
392
393
394
395
396
397
398
    args.model_type = ""
    for key in MODEL_CLASSES:
        if key in args.model_name.lower():
            args.model_type = key  # take the first match in model types
            break
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name, num_labels=num_labels, finetuning_task=args.task_name)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name, do_lower_case=args.do_lower_case)
    model = model_class.from_pretrained(args.model_name, from_tf=bool('.ckpt' in args.model_name), config=config)
thomwolf's avatar
thomwolf committed
399
400
401
402

    if args.local_rank == 0:
        torch.distributed.barrier()

thomwolf's avatar
thomwolf committed
403
    # Distributed and parrallel training
thomwolf's avatar
thomwolf committed
404
    model.to(args.device)
thomwolf's avatar
thomwolf committed
405
    if args.local_rank != -1:
thomwolf's avatar
thomwolf committed
406
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
thomwolf's avatar
thomwolf committed
407
408
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)
thomwolf's avatar
thomwolf committed
409
    elif args.n_gpu > 1:
thomwolf's avatar
thomwolf committed
410
411
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
412
    # Training
thomwolf's avatar
thomwolf committed
413
    if args.do_train:
414
        train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
thomwolf's avatar
thomwolf committed
415
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
thomwolf's avatar
thomwolf committed
416
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
thomwolf's avatar
thomwolf committed
417
418


thomwolf's avatar
thomwolf committed
419
    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
thomwolf's avatar
thomwolf committed
420
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
421
422
423
424
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

thomwolf's avatar
thomwolf committed
425
        logger.info("Saving model checkpoint to %s", args.output_dir)
426
427
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
thomwolf's avatar
thomwolf committed
428
429
        model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
430
        tokenizer.save_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
431
432

        # Good practice: save your training arguments together with the trained model
433
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
thomwolf's avatar
thomwolf committed
434

435
        # Load a trained model and vocabulary that you have fine-tuned
436
437
        model = model_class.from_pretrained(args.output_dir)
        tokenizer = tokenizer_class.from_pretrained(args.output_dir)
438
        model.to(args.device)
thomwolf's avatar
thomwolf committed
439

thomwolf's avatar
thomwolf committed
440
    # Evaluation
thomwolf's avatar
thomwolf committed
441
    if args.do_eval and args.local_rank in [-1, 0]:
thomwolf's avatar
thomwolf committed
442
443
        checkpoints = [args.output_dir + './' + WEIGHTS_NAME]
        if args.eval_all_checkpoints:
thomwolf's avatar
thomwolf committed
444
445
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
            logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
thomwolf's avatar
thomwolf committed
446
447
448
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        results = {}
        for checkpoint in checkpoints:
thomwolf's avatar
thomwolf committed
449
450
            global_step = int(checkpoint.split('-')[-1])
            model = model_class.from_pretrained(checkpoint)
thomwolf's avatar
thomwolf committed
451
452
            model.to(args.device)
            result = evaluate(args, model, tokenizer, prefix=global_step)
thomwolf's avatar
thomwolf committed
453
454
455
            result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
            results.update(result)

thomwolf's avatar
thomwolf committed
456
        return results
thomwolf's avatar
thomwolf committed
457
458
459
460


if __name__ == "__main__":
    main()