trainer.py 33.1 KB
Newer Older
Julien Chaumond's avatar
Julien Chaumond committed
1
2
import json
import logging
3
import math
Julien Chaumond's avatar
Julien Chaumond committed
4
5
6
7
8
9
import os
import random
import re
import shutil
from contextlib import contextmanager
from pathlib import Path
Lysandre's avatar
Lysandre committed
10
from typing import Callable, Dict, List, Optional, Tuple
Julien Chaumond's avatar
Julien Chaumond committed
11
12
13

import numpy as np
import torch
14
from packaging import version
Julien Chaumond's avatar
Julien Chaumond committed
15
16
17
18
from torch import nn
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.dataset import Dataset
from torch.utils.data.distributed import DistributedSampler
19
from torch.utils.data.sampler import RandomSampler, Sampler, SequentialSampler
20
from tqdm.auto import tqdm, trange
Julien Chaumond's avatar
Julien Chaumond committed
21
22
23
24

from .data.data_collator import DataCollator, DefaultDataCollator
from .modeling_utils import PreTrainedModel
from .optimization import AdamW, get_linear_schedule_with_warmup
Julien Plu's avatar
Julien Plu committed
25
from .trainer_utils import PREFIX_CHECKPOINT_DIR, EvalPrediction, PredictionOutput, TrainOutput
Lysandre Debut's avatar
Lysandre Debut committed
26
from .training_args import TrainingArguments, is_tpu_available
Julien Chaumond's avatar
Julien Chaumond committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40


try:
    from apex import amp

    _has_apex = True
except ImportError:
    _has_apex = False


def is_apex_available():
    return _has_apex


Lysandre Debut's avatar
Lysandre Debut committed
41
42
43
44
45
if is_tpu_available():
    import torch_xla.core.xla_model as xm
    import torch_xla.debug.metrics as met
    import torch_xla.distributed.parallel_loader as pl

Julien Chaumond's avatar
Julien Chaumond committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
try:
    from torch.utils.tensorboard import SummaryWriter

    _has_tensorboard = True
except ImportError:
    try:
        from tensorboardX import SummaryWriter

        _has_tensorboard = True
    except ImportError:
        _has_tensorboard = False


def is_tensorboard_available():
    return _has_tensorboard


63
64
65
try:
    import wandb

66
67
68
69
70
71
    wandb.ensure_configured()
    if wandb.api.api_key is None:
        _has_wandb = False
        wandb.termwarn("W&B installed but not logged in.  Run `wandb login` or set the WANDB_API_KEY env variable.")
    else:
        _has_wandb = False if os.getenv("WANDB_DISABLED") else True
72
73
74
75
76
77
78
79
except ImportError:
    _has_wandb = False


def is_wandb_available():
    return _has_wandb


Julien Chaumond's avatar
Julien Chaumond committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
logger = logging.getLogger(__name__)


def set_seed(seed: int):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    # ^^ safe to call this function even if cuda is not available


@contextmanager
def torch_distributed_zero_first(local_rank: int):
    """
94
    Decorator to make all processes in distributed training wait for each local_master to do something.
Julien Chaumond's avatar
Julien Chaumond committed
95
96
97
98
99
100
101
102
    """
    if local_rank not in [-1, 0]:
        torch.distributed.barrier()
    yield
    if local_rank == 0:
        torch.distributed.barrier()


103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
class SequentialDistributedSampler(Sampler):
    """
    Distributed Sampler that subsamples indicies sequentially,
    making it easier to collate all results at the end.

    Even though we only use this sampler for eval and predict (no training),
    which means that the model params won't have to be synced (i.e. will not hang
    for synchronization even if varied number of forward passes), we still add extra
    samples to the sampler to make it evenly divisible (like in `DistributedSampler`)
    to make it easy to `gather` or `reduce` resulting tensors at the end of the loop.
    """

    def __init__(self, dataset, num_replicas=None, rank=None):
        if num_replicas is None:
            if not torch.distributed.is_available():
                raise RuntimeError("Requires distributed package to be available")
            num_replicas = torch.distributed.get_world_size()
        if rank is None:
            if not torch.distributed.is_available():
                raise RuntimeError("Requires distributed package to be available")
            rank = torch.distributed.get_rank()
        self.dataset = dataset
        self.num_replicas = num_replicas
        self.rank = rank
        self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
        self.total_size = self.num_samples * self.num_replicas

    def __iter__(self):
        indices = list(range(len(self.dataset)))

        # add extra samples to make it evenly divisible
        indices += indices[: (self.total_size - len(indices))]
        assert len(indices) == self.total_size

        # subsample
        indices = indices[self.rank * self.num_samples : (self.rank + 1) * self.num_samples]
        assert len(indices) == self.num_samples

        return iter(indices)

    def __len__(self):
        return self.num_samples


Lysandre Debut's avatar
Lysandre Debut committed
147
148
149
150
151
152
def get_tpu_sampler(dataset: Dataset):
    if xm.xrt_world_size() <= 1:
        return RandomSampler(dataset)
    return DistributedSampler(dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal())


Julien Chaumond's avatar
Julien Chaumond committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
class Trainer:
    """
    Trainer is a simple but feature-complete training and eval loop for PyTorch,
    optimized for Transformers.
    """

    model: PreTrainedModel
    args: TrainingArguments
    data_collator: DataCollator
    train_dataset: Optional[Dataset]
    eval_dataset: Optional[Dataset]
    compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None
    prediction_loss_only: bool
    tb_writer: Optional["SummaryWriter"] = None
167
    optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = None
168
169
    global_step: Optional[int] = None
    epoch: Optional[float] = None
Julien Chaumond's avatar
Julien Chaumond committed
170
171
172
173
174
175
176
177
178
179

    def __init__(
        self,
        model: PreTrainedModel,
        args: TrainingArguments,
        data_collator: Optional[DataCollator] = None,
        train_dataset: Optional[Dataset] = None,
        eval_dataset: Optional[Dataset] = None,
        compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
        prediction_loss_only=False,
180
        tb_writer: Optional["SummaryWriter"] = None,
181
        optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = None,
Julien Chaumond's avatar
Julien Chaumond committed
182
183
184
185
186
187
188
189
190
    ):
        """
        Trainer is a simple but feature-complete training and eval loop for PyTorch,
        optimized for Transformers.

        Args:
            prediction_loss_only:
                (Optional) in evaluation and prediction, only return the loss
        """
191
        self.model = model.to(args.device)
Julien Chaumond's avatar
Julien Chaumond committed
192
193
194
195
196
197
198
199
200
        self.args = args
        if data_collator is not None:
            self.data_collator = data_collator
        else:
            self.data_collator = DefaultDataCollator()
        self.train_dataset = train_dataset
        self.eval_dataset = eval_dataset
        self.compute_metrics = compute_metrics
        self.prediction_loss_only = prediction_loss_only
201
        self.optimizers = optimizers
202
203
        if tb_writer is not None:
            self.tb_writer = tb_writer
204
        elif is_tensorboard_available() and self.is_world_master():
Julien Chaumond's avatar
Julien Chaumond committed
205
206
207
208
209
            self.tb_writer = SummaryWriter(log_dir=self.args.logging_dir)
        if not is_tensorboard_available():
            logger.warning(
                "You are instantiating a Trainer but Tensorboard is not installed. You should consider installing it."
            )
210
211
212
        if is_wandb_available():
            self._setup_wandb()
        else:
213
            logger.info(
214
215
                "You are instantiating a Trainer but W&B is not installed. To use wandb logging, "
                "run `pip install wandb; wandb login` see https://docs.wandb.com/huggingface."
216
            )
Julien Chaumond's avatar
Julien Chaumond committed
217
218
        set_seed(self.args.seed)
        # Create output directory if needed
219
        if self.is_world_master():
Julien Chaumond's avatar
Julien Chaumond committed
220
            os.makedirs(self.args.output_dir, exist_ok=True)
Lysandre Debut's avatar
Lysandre Debut committed
221
222
223
224
        if is_tpu_available():
            # Set an xla_device flag on the model's config.
            # We'll find a more elegant and not need to do this in the future.
            self.model.config.xla_device = True
Julien Chaumond's avatar
Julien Chaumond committed
225
226
227
228

    def get_train_dataloader(self) -> DataLoader:
        if self.train_dataset is None:
            raise ValueError("Trainer: training requires a train_dataset.")
Lysandre Debut's avatar
Lysandre Debut committed
229
230
231
232
233
234
235
236
237
238
        if is_tpu_available():
            train_sampler = get_tpu_sampler(self.train_dataset)
        else:
            train_sampler = (
                RandomSampler(self.train_dataset)
                if self.args.local_rank == -1
                else DistributedSampler(self.train_dataset)
            )

        data_loader = DataLoader(
Julien Chaumond's avatar
Julien Chaumond committed
239
240
241
242
243
244
            self.train_dataset,
            batch_size=self.args.train_batch_size,
            sampler=train_sampler,
            collate_fn=self.data_collator.collate_batch,
        )

Lysandre Debut's avatar
Lysandre Debut committed
245
246
        return data_loader

Julien Chaumond's avatar
Julien Chaumond committed
247
248
249
    def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader:
        if eval_dataset is None and self.eval_dataset is None:
            raise ValueError("Trainer: evaluation requires an eval_dataset.")
Lysandre Debut's avatar
Lysandre Debut committed
250

251
252
        eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset

253
254
255
256
257
258
259
260
        if is_tpu_available():
            sampler = SequentialDistributedSampler(
                eval_dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal()
            )
        elif self.args.local_rank != -1:
            sampler = SequentialDistributedSampler(eval_dataset)
        else:
            sampler = SequentialSampler(eval_dataset)
Lysandre Debut's avatar
Lysandre Debut committed
261
262

        data_loader = DataLoader(
263
            eval_dataset,
Lysandre Debut's avatar
Lysandre Debut committed
264
            sampler=sampler,
Julien Chaumond's avatar
Julien Chaumond committed
265
266
267
268
            batch_size=self.args.eval_batch_size,
            collate_fn=self.data_collator.collate_batch,
        )

Lysandre Debut's avatar
Lysandre Debut committed
269
270
        return data_loader

Julien Chaumond's avatar
Julien Chaumond committed
271
272
    def get_test_dataloader(self, test_dataset: Dataset) -> DataLoader:
        # We use the same batch_size as for eval.
273
274
275
276
277
278
279
280
        if is_tpu_available():
            sampler = SequentialDistributedSampler(
                test_dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal()
            )
        elif self.args.local_rank != -1:
            sampler = SequentialDistributedSampler(test_dataset)
        else:
            sampler = SequentialSampler(test_dataset)
Lysandre Debut's avatar
Lysandre Debut committed
281
282

        data_loader = DataLoader(
Julien Chaumond's avatar
Julien Chaumond committed
283
            test_dataset,
Lysandre Debut's avatar
Lysandre Debut committed
284
            sampler=sampler,
Julien Chaumond's avatar
Julien Chaumond committed
285
286
287
288
            batch_size=self.args.eval_batch_size,
            collate_fn=self.data_collator.collate_batch,
        )

Lysandre Debut's avatar
Lysandre Debut committed
289
290
        return data_loader

Julien Chaumond's avatar
Julien Chaumond committed
291
292
293
    def get_optimizers(
        self, num_training_steps: int
    ) -> Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]:
294
295
296
297
298
299
300
301
302
        """
        Setup the optimizer and the learning rate scheduler.

        We provide a reasonable default that works well.
        If you want to use something else, you can pass a tuple in the Trainer's init,
        or override this method in a subclass.
        """
        if self.optimizers is not None:
            return self.optimizers
Julien Chaumond's avatar
Julien Chaumond committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
        # Prepare optimizer and schedule (linear warmup and decay)
        no_decay = ["bias", "LayerNorm.weight"]
        optimizer_grouped_parameters = [
            {
                "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)],
                "weight_decay": self.args.weight_decay,
            },
            {
                "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)],
                "weight_decay": 0.0,
            },
        ]
        optimizer = AdamW(optimizer_grouped_parameters, lr=self.args.learning_rate, eps=self.args.adam_epsilon)
        scheduler = get_linear_schedule_with_warmup(
            optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=num_training_steps
        )
        return optimizer, scheduler

321
    def _setup_wandb(self):
322
323
324
        """
        Setup the optional Weights & Biases (`wandb`) integration.

325
326
327
328
329
330
331
332
333
334
335
        One can override this method to customize the setup if needed.  Find more information at https://docs.wandb.com/huggingface
        You can also override the following environment variables:

        Environment:
            WANDB_WATCH:
                (Optional, ["gradients", "all", "false"]) "gradients" by default, set to "false" to disable gradient logging
                or "all" to log gradients and parameters
            WANDB_PROJECT:
                (Optional): str - "huggingface" by default, set this to a custom string to store results in a different project
            WANDB_DISABLED:
                (Optional): boolean - defaults to false, set to "true" to disable wandb entirely
336
        """
337
338
        logger.info('Automatic Weights & Biases logging enabled, to disable set os.environ["WANDB_DISABLED"] = "true"')
        wandb.init(project=os.getenv("WANDB_PROJECT", "huggingface"), config=vars(self.args))
339
        # keep track of model topology and gradients
340
341
342
343
        if os.getenv("WANDB_WATCH") != "false":
            wandb.watch(
                self.model, log=os.getenv("WANDB_WATCH", "gradients"), log_freq=max(100, self.args.logging_steps)
            )
344

345
    def num_examples(self, dataloader: DataLoader) -> int:
346
347
348
        """
        Helper to get num of examples from a DataLoader, by accessing its Dataset.
        """
349
        return len(dataloader.dataset)
350

Julien Chaumond's avatar
Julien Chaumond committed
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
    def train(self, model_path: Optional[str] = None):
        """
        Main training entry point.

        Args:
            model_path:
                (Optional) Local path to model if model to train has been instantiated from a local path
                If present, we will try reloading the optimizer/scheduler states from there.
        """
        train_dataloader = self.get_train_dataloader()
        if self.args.max_steps > 0:
            t_total = self.args.max_steps
            num_train_epochs = (
                self.args.max_steps // (len(train_dataloader) // self.args.gradient_accumulation_steps) + 1
            )
        else:
            t_total = int(len(train_dataloader) // self.args.gradient_accumulation_steps * self.args.num_train_epochs)
            num_train_epochs = self.args.num_train_epochs

        optimizer, scheduler = self.get_optimizers(num_training_steps=t_total)

        # Check if saved optimizer or scheduler states exist
        if (
            model_path is not None
            and os.path.isfile(os.path.join(model_path, "optimizer.pt"))
            and os.path.isfile(os.path.join(model_path, "scheduler.pt"))
        ):
            # Load in optimizer and scheduler states
379
380
381
            optimizer.load_state_dict(
                torch.load(os.path.join(model_path, "optimizer.pt"), map_location=self.args.device)
            )
Julien Chaumond's avatar
Julien Chaumond committed
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
            scheduler.load_state_dict(torch.load(os.path.join(model_path, "scheduler.pt")))

        model = self.model
        if self.args.fp16:
            if not is_apex_available():
                raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
            model, optimizer = amp.initialize(model, optimizer, opt_level=self.args.fp16_opt_level)

        # multi-gpu training (should be after apex fp16 initialization)
        if self.args.n_gpu > 1:
            model = torch.nn.DataParallel(model)

        # Distributed training (should be after apex fp16 initialization)
        if self.args.local_rank != -1:
            model = torch.nn.parallel.DistributedDataParallel(
                model,
                device_ids=[self.args.local_rank],
                output_device=self.args.local_rank,
                find_unused_parameters=True,
            )

        if self.tb_writer is not None:
            self.tb_writer.add_text("args", self.args.to_json_string())
405
            self.tb_writer.add_hparams(self.args.to_sanitized_dict(), metric_dict={})
Julien Chaumond's avatar
Julien Chaumond committed
406
407

        # Train!
Lysandre Debut's avatar
Lysandre Debut committed
408
409
410
411
412
413
        if is_tpu_available():
            total_train_batch_size = self.args.train_batch_size * xm.xrt_world_size()
        else:
            total_train_batch_size = (
                self.args.train_batch_size
                * self.args.gradient_accumulation_steps
414
                * (torch.distributed.get_world_size() if self.args.local_rank != -1 else 1)
Lysandre Debut's avatar
Lysandre Debut committed
415
            )
Julien Chaumond's avatar
Julien Chaumond committed
416
        logger.info("***** Running training *****")
417
        logger.info("  Num examples = %d", self.num_examples(train_dataloader))
Julien Chaumond's avatar
Julien Chaumond committed
418
        logger.info("  Num Epochs = %d", num_train_epochs)
419
        logger.info("  Instantaneous batch size per device = %d", self.args.per_device_train_batch_size)
Lysandre Debut's avatar
Lysandre Debut committed
420
        logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d", total_train_batch_size)
Julien Chaumond's avatar
Julien Chaumond committed
421
422
423
        logger.info("  Gradient Accumulation steps = %d", self.args.gradient_accumulation_steps)
        logger.info("  Total optimization steps = %d", t_total)

424
425
        self.global_step = 0
        self.epoch = 0
Julien Chaumond's avatar
Julien Chaumond committed
426
427
428
429
430
431
        epochs_trained = 0
        steps_trained_in_current_epoch = 0
        # Check if continuing training from a checkpoint
        if model_path is not None:
            # set global_step to global_step of last saved checkpoint from model path
            try:
432
433
434
                self.global_step = int(model_path.split("-")[-1].split("/")[0])
                epochs_trained = self.global_step // (len(train_dataloader) // self.args.gradient_accumulation_steps)
                steps_trained_in_current_epoch = self.global_step % (
Julien Chaumond's avatar
Julien Chaumond committed
435
436
437
438
439
                    len(train_dataloader) // self.args.gradient_accumulation_steps
                )

                logger.info("  Continuing training from checkpoint, will skip to saved global_step")
                logger.info("  Continuing training from epoch %d", epochs_trained)
440
                logger.info("  Continuing training from global step %d", self.global_step)
Julien Chaumond's avatar
Julien Chaumond committed
441
442
                logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
            except ValueError:
443
                self.global_step = 0
Julien Chaumond's avatar
Julien Chaumond committed
444
445
446
447
448
449
                logger.info("  Starting fine-tuning.")

        tr_loss = 0.0
        logging_loss = 0.0
        model.zero_grad()
        train_iterator = trange(
Lysandre Debut's avatar
Lysandre Debut committed
450
            epochs_trained, int(num_train_epochs), desc="Epoch", disable=not self.is_local_master()
Julien Chaumond's avatar
Julien Chaumond committed
451
452
        )
        for epoch in train_iterator:
453
454
455
            if isinstance(train_dataloader, DataLoader) and isinstance(train_dataloader.sampler, DistributedSampler):
                train_dataloader.sampler.set_epoch(epoch)

456
457
458
459
460
461
462
463
            if is_tpu_available():
                parallel_loader = pl.ParallelLoader(train_dataloader, [self.args.device]).per_device_loader(
                    self.args.device
                )
                epoch_iterator = tqdm(parallel_loader, desc="Iteration", disable=not self.is_local_master())
            else:
                epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=not self.is_local_master())

Julien Chaumond's avatar
Julien Chaumond committed
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
            for step, inputs in enumerate(epoch_iterator):

                # Skip past any already trained steps if resuming training
                if steps_trained_in_current_epoch > 0:
                    steps_trained_in_current_epoch -= 1
                    continue

                tr_loss += self._training_step(model, inputs, optimizer)

                if (step + 1) % self.args.gradient_accumulation_steps == 0 or (
                    # last step in epoch but step is always smaller than gradient_accumulation_steps
                    len(epoch_iterator) <= self.args.gradient_accumulation_steps
                    and (step + 1) == len(epoch_iterator)
                ):
                    if self.args.fp16:
                        torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), self.args.max_grad_norm)
                    else:
                        torch.nn.utils.clip_grad_norm_(model.parameters(), self.args.max_grad_norm)

Lysandre Debut's avatar
Lysandre Debut committed
483
484
485
486
487
                    if is_tpu_available():
                        xm.optimizer_step(optimizer)
                    else:
                        optimizer.step()

Julien Chaumond's avatar
Julien Chaumond committed
488
489
                    scheduler.step()
                    model.zero_grad()
490
491
                    self.global_step += 1
                    self.epoch = epoch + (step + 1) / len(epoch_iterator)
Julien Chaumond's avatar
Julien Chaumond committed
492

493
494
495
496
497
                    if (self.args.logging_steps > 0 and self.global_step % self.args.logging_steps == 0) or (
                        self.global_step == 1 and self.args.logging_first_step
                    ):
                        logs: Dict[str, float] = {}
                        logs["loss"] = (tr_loss - logging_loss) / self.args.logging_steps
498
499
500
501
502
503
                        # backward compatibility for pytorch schedulers
                        logs["learning_rate"] = (
                            scheduler.get_last_lr()[0]
                            if version.parse(torch.__version__) >= version.parse("1.4")
                            else scheduler.get_lr()[0]
                        )
504
505
506
507
508
509
510
                        logging_loss = tr_loss

                        self._log(logs)

                        if self.args.evaluate_during_training:
                            self.evaluate()

511
512
513
514
515
516
517
518
519
520
521
522
523
                    if self.args.save_steps > 0 and self.global_step % self.args.save_steps == 0:
                        # In all cases (even distributed/parallel), self.model is always a reference
                        # to the model we want to save.
                        if hasattr(model, "module"):
                            assert model.module is self.model
                        else:
                            assert model is self.model
                        # Save model checkpoint
                        output_dir = os.path.join(self.args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{self.global_step}")

                        self.save_model(output_dir)

                        if self.is_world_master():
Julien Chaumond's avatar
Julien Chaumond committed
524
                            self._rotate_checkpoints()
525
526
527
528
529
530

                        if is_tpu_available():
                            xm.rendezvous("saving_optimizer_states")
                            xm.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                            xm.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
                        elif self.is_world_master():
Julien Chaumond's avatar
Julien Chaumond committed
531
532
533
                            torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                            torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))

534
                if self.args.max_steps > 0 and self.global_step > self.args.max_steps:
Julien Chaumond's avatar
Julien Chaumond committed
535
536
                    epoch_iterator.close()
                    break
537
            if self.args.max_steps > 0 and self.global_step > self.args.max_steps:
Julien Chaumond's avatar
Julien Chaumond committed
538
539
                train_iterator.close()
                break
Lysandre Debut's avatar
Lysandre Debut committed
540
541
542
            if self.args.tpu_metrics_debug:
                # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
                xm.master_print(met.metrics_report())
Julien Chaumond's avatar
Julien Chaumond committed
543
544
545
546
547

        if self.tb_writer:
            self.tb_writer.close()

        logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n")
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
        return TrainOutput(self.global_step, tr_loss / self.global_step)

    def _log(self, logs: Dict[str, float], iterator: Optional[tqdm] = None) -> None:
        if self.epoch is not None:
            logs["epoch"] = self.epoch
        if self.tb_writer:
            for k, v in logs.items():
                self.tb_writer.add_scalar(k, v, self.global_step)
        if is_wandb_available():
            wandb.log(logs, step=self.global_step)
        output = json.dumps({**logs, **{"step": self.global_step}})
        if iterator is not None:
            iterator.write(output)
        else:
            print(output)
Julien Chaumond's avatar
Julien Chaumond committed
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586

    def _training_step(
        self, model: nn.Module, inputs: Dict[str, torch.Tensor], optimizer: torch.optim.Optimizer
    ) -> float:
        model.train()
        for k, v in inputs.items():
            inputs[k] = v.to(self.args.device)

        outputs = model(**inputs)
        loss = outputs[0]  # model outputs are always tuple in transformers (see doc)

        if self.args.n_gpu > 1:
            loss = loss.mean()  # mean() to average on multi-gpu parallel training
        if self.args.gradient_accumulation_steps > 1:
            loss = loss / self.args.gradient_accumulation_steps

        if self.args.fp16:
            with amp.scale_loss(loss, optimizer) as scaled_loss:
                scaled_loss.backward()
        else:
            loss.backward()

        return loss.item()

Lysandre Debut's avatar
Lysandre Debut committed
587
588
589
590
591
592
    def is_local_master(self) -> bool:
        if is_tpu_available():
            return xm.is_master_ordinal(local=True)
        else:
            return self.args.local_rank in [-1, 0]

Julien Chaumond's avatar
Julien Chaumond committed
593
594
595
596
597
    def is_world_master(self) -> bool:
        """
        This will be True only in one process, even in distributed mode,
        even when training on multiple machines.
        """
Lysandre Debut's avatar
Lysandre Debut committed
598
599
600
601
        if is_tpu_available():
            return xm.is_master_ordinal(local=False)
        else:
            return self.args.local_rank == -1 or torch.distributed.get_rank() == 0
Julien Chaumond's avatar
Julien Chaumond committed
602
603
604
605
606
607

    def save_model(self, output_dir: Optional[str] = None):
        """
        Saving best-practices: if you use default names for the model,
        you can reload it using from_pretrained().

608
        Will only save from the world_master process (unless in TPUs).
Julien Chaumond's avatar
Julien Chaumond committed
609
        """
610
611
612
613

        if is_tpu_available():
            self._save_tpu(output_dir)
        elif self.is_world_master():
Julien Chaumond's avatar
Julien Chaumond committed
614
615
            self._save(output_dir)

616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
    def _save_tpu(self, output_dir: Optional[str] = None):
        output_dir = output_dir if output_dir is not None else self.args.output_dir
        logger.info("Saving model checkpoint to %s", output_dir)

        if xm.is_master_ordinal():
            os.makedirs(output_dir, exist_ok=True)
            torch.save(self.args, os.path.join(output_dir, "training_args.bin"))

        # Save a trained model and configuration using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        if not isinstance(self.model, PreTrainedModel):
            raise ValueError("Trainer.model appears to not be a PreTrainedModel")

        xm.rendezvous("saving_checkpoint")
        self.model.save_pretrained(output_dir)

Julien Chaumond's avatar
Julien Chaumond committed
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
    def _save(self, output_dir: Optional[str] = None):
        output_dir = output_dir if output_dir is not None else self.args.output_dir
        os.makedirs(output_dir, exist_ok=True)
        logger.info("Saving model checkpoint to %s", output_dir)
        # Save a trained model and configuration using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        if not isinstance(self.model, PreTrainedModel):
            raise ValueError("Trainer.model appears to not be a PreTrainedModel")
        self.model.save_pretrained(output_dir)

        # Good practice: save your training arguments together with the trained model
        torch.save(self.args, os.path.join(output_dir, "training_args.bin"))

    def _sorted_checkpoints(self, checkpoint_prefix=PREFIX_CHECKPOINT_DIR, use_mtime=False) -> List[str]:
        ordering_and_checkpoint_path = []

648
        glob_checkpoints = [str(x) for x in Path(self.args.output_dir).glob(f"{checkpoint_prefix}-*")]
Julien Chaumond's avatar
Julien Chaumond committed
649
650
651
652
653

        for path in glob_checkpoints:
            if use_mtime:
                ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
            else:
654
                regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
Julien Chaumond's avatar
Julien Chaumond committed
655
656
657
658
659
660
661
662
                if regex_match and regex_match.groups():
                    ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))

        checkpoints_sorted = sorted(ordering_and_checkpoint_path)
        checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
        return checkpoints_sorted

    def _rotate_checkpoints(self, use_mtime=False) -> None:
663
        if self.args.save_total_limit is None or self.args.save_total_limit <= 0:
Julien Chaumond's avatar
Julien Chaumond committed
664
665
666
667
668
669
670
671
672
673
674
675
676
677
            return

        # Check if we should delete older checkpoint(s)
        checkpoints_sorted = self._sorted_checkpoints(use_mtime=use_mtime)
        if len(checkpoints_sorted) <= self.args.save_total_limit:
            return

        number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - self.args.save_total_limit)
        checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
        for checkpoint in checkpoints_to_be_deleted:
            logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint))
            shutil.rmtree(checkpoint)

    def evaluate(
678
        self, eval_dataset: Optional[Dataset] = None, prediction_loss_only: Optional[bool] = None,
Julien Chaumond's avatar
Julien Chaumond committed
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
    ) -> Dict[str, float]:
        """
        Run evaluation and return metrics.

        The calling script will be responsible for providing a method to compute metrics, as they are
        task-dependent.

        Args:
            eval_dataset: (Optional) Pass a dataset if you wish to override
            the one on the instance.
        Returns:
            A dict containing:
                - the eval loss
                - the potential metrics computed from the predictions
        """
        eval_dataloader = self.get_eval_dataloader(eval_dataset)

        output = self._prediction_loop(eval_dataloader, description="Evaluation")
Lysandre Debut's avatar
Lysandre Debut committed
697

698
699
        self._log(output.metrics)

Lysandre Debut's avatar
Lysandre Debut committed
700
701
702
703
        if self.args.tpu_metrics_debug:
            # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
            xm.master_print(met.metrics_report())

Julien Chaumond's avatar
Julien Chaumond committed
704
705
706
707
708
709
710
711
712
713
        return output.metrics

    def predict(self, test_dataset: Dataset) -> PredictionOutput:
        """
        Run prediction and return predictions and potential metrics.

        Depending on the dataset and your use case, your test dataset may contain labels.
        In that case, this method will also return metrics, like in evaluate().
        """
        test_dataloader = self.get_test_dataloader(test_dataset)
714

Julien Chaumond's avatar
Julien Chaumond committed
715
716
717
718
719
720
721
722
723
724
725
726
727
        return self._prediction_loop(test_dataloader, description="Prediction")

    def _prediction_loop(
        self, dataloader: DataLoader, description: str, prediction_loss_only: Optional[bool] = None
    ) -> PredictionOutput:
        """
        Prediction/evaluation loop, shared by `evaluate()` and `predict()`.

        Works both with or without labels.
        """

        prediction_loss_only = prediction_loss_only if prediction_loss_only is not None else self.prediction_loss_only

728
        model = self.model
Julien Chaumond's avatar
Julien Chaumond committed
729
        # multi-gpu eval
730
731
        if self.args.n_gpu > 1:
            model = torch.nn.DataParallel(model)
Julien Chaumond's avatar
Julien Chaumond committed
732
733
        else:
            model = self.model
734
735
        # Note: in torch.distributed mode, there's no point in wrapping the model
        # inside a DistributedDataParallel as we'll be under `no_grad` anyways.
Julien Chaumond's avatar
Julien Chaumond committed
736

737
        batch_size = dataloader.batch_size
Julien Chaumond's avatar
Julien Chaumond committed
738
        logger.info("***** Running %s *****", description)
739
740
        logger.info("  Num examples = %d", self.num_examples(dataloader))
        logger.info("  Batch size = %d", batch_size)
Julien Chaumond's avatar
Julien Chaumond committed
741
        eval_losses: List[float] = []
742
743
        preds: torch.Tensor = None
        label_ids: torch.Tensor = None
Julien Chaumond's avatar
Julien Chaumond committed
744
745
        model.eval()

746
747
748
        if is_tpu_available():
            dataloader = pl.ParallelLoader(dataloader, [self.args.device]).per_device_loader(self.args.device)

Julien Chaumond's avatar
Julien Chaumond committed
749
        for inputs in tqdm(dataloader, desc=description):
Suraj Patil's avatar
Suraj Patil committed
750
            has_labels = any(inputs.get(k) is not None for k in ["labels", "lm_labels", "masked_lm_labels"])
Julien Chaumond's avatar
Julien Chaumond committed
751
752
753
754
755
756
757
758
759
760
761
762
763
764

            for k, v in inputs.items():
                inputs[k] = v.to(self.args.device)

            with torch.no_grad():
                outputs = model(**inputs)
                if has_labels:
                    step_eval_loss, logits = outputs[:2]
                    eval_losses += [step_eval_loss.mean().item()]
                else:
                    logits = outputs[0]

            if not prediction_loss_only:
                if preds is None:
765
                    preds = logits.detach()
Julien Chaumond's avatar
Julien Chaumond committed
766
                else:
767
                    preds = torch.cat((preds, logits.detach()), dim=0)
Julien Chaumond's avatar
Julien Chaumond committed
768
769
                if inputs.get("labels") is not None:
                    if label_ids is None:
770
                        label_ids = inputs["labels"].detach()
Julien Chaumond's avatar
Julien Chaumond committed
771
                    else:
772
                        label_ids = torch.cat((label_ids, inputs["labels"].detach()), dim=0)
Julien Chaumond's avatar
Julien Chaumond committed
773

774
775
776
777
778
779
780
        if self.args.local_rank != -1:
            # In distributed mode, concatenate all results from all nodes:
            if preds is not None:
                preds = self.distributed_concat(preds, num_total_examples=self.num_examples(dataloader))
            if label_ids is not None:
                label_ids = self.distributed_concat(label_ids, num_total_examples=self.num_examples(dataloader))
        elif is_tpu_available():
Lysandre Debut's avatar
Lysandre Debut committed
781
            # tpu-comment: Get all predictions and labels from all worker shards of eval dataset
782
783
784
785
786
787
788
789
790
791
            if preds is not None:
                preds = xm.mesh_reduce("eval_preds", preds, torch.cat)
            if label_ids is not None:
                label_ids = xm.mesh_reduce("eval_label_ids", label_ids, torch.cat)

        # Finally, turn the aggregated tensors into numpy arrays.
        if preds is not None:
            preds = preds.cpu().numpy()
        if label_ids is not None:
            label_ids = label_ids.cpu().numpy()
Lysandre Debut's avatar
Lysandre Debut committed
792

Julien Chaumond's avatar
Julien Chaumond committed
793
794
795
796
797
        if self.compute_metrics is not None and preds is not None and label_ids is not None:
            metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids))
        else:
            metrics = {}
        if len(eval_losses) > 0:
798
799
800
801
802
803
            metrics["eval_loss"] = np.mean(eval_losses)

        # Prefix all keys with eval_
        for key in list(metrics.keys()):
            if not key.startswith("eval_"):
                metrics[f"eval_{key}"] = metrics.pop(key)
Julien Chaumond's avatar
Julien Chaumond committed
804
805

        return PredictionOutput(predictions=preds, label_ids=label_ids, metrics=metrics)
806
807
808
809
810
811
812
813
814
815
816
817

    def distributed_concat(self, tensor: torch.Tensor, num_total_examples: int) -> torch.Tensor:
        assert self.args.local_rank != -1

        output_tensors = [tensor.clone() for _ in range(torch.distributed.get_world_size())]
        torch.distributed.all_gather(output_tensors, tensor)

        concat = torch.cat(output_tensors, dim=0)

        # truncate the dummy elements added by SequentialDistributedSampler
        output = concat[:num_total_examples]
        return output