test_modeling_tf_gpt2.py 17.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
17
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
18
from transformers import GPT2Config, is_tf_available
19
from transformers.testing_utils import require_tf, slow
thomwolf's avatar
thomwolf committed
20

21
from .test_configuration_common import ConfigTester
22
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
thomwolf's avatar
thomwolf committed
23
24


25
if is_tf_available():
thomwolf's avatar
thomwolf committed
26
    import tensorflow as tf
27

Sylvain Gugger's avatar
Sylvain Gugger committed
28
    from transformers.models.gpt2.modeling_tf_gpt2 import (
29
        TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
30
        TFGPT2DoubleHeadsModel,
31
        TFGPT2ForSequenceClassification,
32
33
        TFGPT2LMHeadModel,
        TFGPT2Model,
34
        shape_list,
35
    )
thomwolf's avatar
thomwolf committed
36
37


38
39
class TFGPT2ModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
40
41
        self,
        parent,
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_token_type_ids = True
        self.use_input_mask = True
        self.use_labels = True
        self.use_mc_token_ids = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
        self.bos_token_id = self.vocab_size - 1
        self.eos_token_id = self.vocab_size - 1
68
        self.pad_token_id = self.vocab_size - 1
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = GPT2Config(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            # intermediate_size=self.intermediate_size,
            # hidden_act=self.hidden_act,
            # hidden_dropout_prob=self.hidden_dropout_prob,
            # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
            n_ctx=self.max_position_embeddings,
            # type_vocab_size=self.type_vocab_size,
            # initializer_range=self.initializer_range
            bos_token_id=self.bos_token_id,
            eos_token_id=self.eos_token_id,
108
109
            pad_token_id=self.pad_token_id,
            return_dict=True,
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
        )

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

    def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFGPT2Model(config=config)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
133
        result = model(inputs)
134
135

        inputs = [input_ids, None, input_mask]  # None is the input for 'past'
Sylvain Gugger's avatar
Sylvain Gugger committed
136
        result = model(inputs)
137

Sylvain Gugger's avatar
Sylvain Gugger committed
138
        result = model(input_ids)
139

140
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
141
142
143
144
145

    def create_and_check_gpt2_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFGPT2Model(config=config)

        # first forward pass
146
147
148
149
150
151
152
        outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids)
        outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
153
        output, past = outputs.to_tuple()
154
155
156
157
158
159
160
161
162

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
        next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size)

        # append to next input_ids and token_type_ids
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1)

Sylvain Gugger's avatar
Sylvain Gugger committed
163
164
        output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"]
        output_from_past = model(next_tokens, token_type_ids=next_token_types, past=past)["last_hidden_state"]
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

        # select random slice
        random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
        output_from_past_slice = output_from_past[:, 0, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)

    def create_and_check_gpt2_model_attention_mask_past(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        model = TFGPT2Model(config=config)

        # create attention mask
        half_seq_length = self.seq_length // 2
        attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32)
        attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32)
        attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1)

        # first forward pass
Sylvain Gugger's avatar
Sylvain Gugger committed
186
        output, past = model(input_ids, attention_mask=attn_mask).to_tuple()
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size)
        vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change)
        condition = tf.transpose(
            tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size))
        )
        input_ids = tf.where(condition, random_other_next_tokens, input_ids)

        # append to next input_ids and attn_mask
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        attn_mask = tf.concat([attn_mask, tf.ones((shape_list(attn_mask)[0], 1), dtype=tf.int32)], axis=1)

        # get two different outputs
Sylvain Gugger's avatar
Sylvain Gugger committed
205
206
        output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, past=past, attention_mask=attn_mask)["last_hidden_state"]
207
208
209
210
211
212
213
214
215

        # select random slice
        random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
        output_from_past_slice = output_from_past[:, 0, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-12)

216
217
218
219
220
    def create_and_check_gpt2_model_past_large_inputs(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        model = TFGPT2Model(config=config)

221
222
223
224
225
        input_ids = input_ids[:1, :]
        input_mask = input_mask[:1, :]
        token_type_ids = token_type_ids[:1, :]
        self.batch_size = 1

226
        # first forward pass
227
        outputs = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, use_cache=True)
228
229
230
231
232

        output, past = outputs.to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
233
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)
234
        next_token_types = ids_tensor((self.batch_size, 3), self.type_vocab_size)
235
236
237

        # append to next input_ids and token_type_ids
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
238
        next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1)
239
        next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1)
240
241
242
243
244
245
246

        output_from_no_past = model(
            next_input_ids, token_type_ids=next_token_type_ids, attention_mask=next_attention_mask
        )["last_hidden_state"]
        output_from_past = model(
            next_tokens, token_type_ids=next_token_types, attention_mask=next_attention_mask, past=past
        )["last_hidden_state"]
247
248
249
250
251
252
253
254
        self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1])

        # select random slice
        random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
        output_from_past_slice = output_from_past[:, :, random_slice_idx]

        # test that outputs are equal for slice
255
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
256

257
258
259
260
261
262
263
    def create_and_check_gpt2_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFGPT2LMHeadModel(config=config)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
264
        result = model(inputs)
265
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

    def create_and_check_gpt2_double_head(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args
    ):
        model = TFGPT2DoubleHeadsModel(config=config)

        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))

        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "mc_token_ids": mc_token_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
282
        result = model(inputs)
283
        self.parent.assertEqual(
284
            result.logits.shape, (self.batch_size, self.num_choices, self.seq_length, self.vocab_size)
285
        )
286
        self.parent.assertEqual(result.mc_logits.shape, (self.batch_size, self.num_choices))
287

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
    def create_and_check_gpt2_for_sequence_classification(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args
    ):
        config.num_labels = self.num_labels
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
            "labels": sequence_labels,
        }
        model = TFGPT2ForSequenceClassification(config)

        result = model(inputs)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "attention_mask": input_mask,
        }
        return config, inputs_dict


326
@require_tf
327
class TFGPT2ModelTest(TFModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
328

329
330
331
332
333
    all_model_classes = (
        (TFGPT2Model, TFGPT2LMHeadModel, TFGPT2ForSequenceClassification, TFGPT2DoubleHeadsModel)
        if is_tf_available()
        else ()
    )
334
    all_generative_model_classes = (TFGPT2LMHeadModel,) if is_tf_available() else ()
335
    test_head_masking = False
336
337
    test_onnx = True
    onnx_min_opset = 10
thomwolf's avatar
thomwolf committed
338
339

    def setUp(self):
340
        self.model_tester = TFGPT2ModelTester(self)
341
        self.config_tester = ConfigTester(self, config_class=GPT2Config, n_embd=37)
thomwolf's avatar
thomwolf committed
342
343
344
345
346
347
348
349

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_gpt2_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model(*config_and_inputs)

350
351
352
353
354
355
356
357
    def test_gpt2_model_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_past(*config_and_inputs)

    def test_gpt2_model_att_mask_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_attention_mask_past(*config_and_inputs)

358
359
360
361
    def test_gpt2_model_past_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_past_large_inputs(*config_and_inputs)

thomwolf's avatar
thomwolf committed
362
363
364
365
366
367
368
369
    def test_gpt2_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_lm_head(*config_and_inputs)

    def test_gpt2_double_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_double_head(*config_and_inputs)

370
371
372
373
374
375
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
376
377
378
379
380
381
382
383
384
385
386

            if model_class in self.all_generative_model_classes:
                x = model.get_output_embeddings()
                assert isinstance(x, tf.keras.layers.Layer)
                name = model.get_bias()
                assert name is None
            else:
                x = model.get_output_embeddings()
                assert x is None
                name = model.get_bias()
                assert name is None
387

388
389
390
391
    def test_gpt2_sequence_classification_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_for_sequence_classification(*config_and_inputs)

392
393
394
395
    def test_mixed_precision(self):
        # TODO JP: Make GPT2 float16 compliant
        pass

Julien Plu's avatar
Julien Plu committed
396
397
398
399
    def test_xla_mode(self):
        # TODO JP: Make GPT2 XLA compliant
        pass

400
    @slow
thomwolf's avatar
thomwolf committed
401
    def test_model_from_pretrained(self):
402
        for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
403
            model = TFGPT2Model.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
404
            self.assertIsNotNone(model)
405
406


407
@require_tf
408
class TFGPT2ModelLanguageGenerationTest(unittest.TestCase):
patrickvonplaten's avatar
patrickvonplaten committed
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
    @slow
    def test_lm_generate_gpt2(self):
        model = TFGPT2LMHeadModel.from_pretrained("gpt2")
        input_ids = tf.convert_to_tensor([[464, 3290]], dtype=tf.int32)  # The dog
        expected_output_ids = [
            464,
            3290,
            373,
            1043,
            287,
            257,
            2214,
            1474,
            262,
            16246,
            286,
            2688,
            290,
            2688,
            27262,
            13,
            198,
            198,
            464,
            3290,
        ]  # The dog was found in a field near the intersection of West and West Streets.\n\nThe dog
        output_ids = model.generate(input_ids, do_sample=False)
436
        self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464

    @slow
    def test_lm_generate_distilgpt2(self):
        model = TFGPT2LMHeadModel.from_pretrained("distilgpt2")
        input_ids = tf.convert_to_tensor([[464, 1893]], dtype=tf.int32)  # The president
        expected_output_ids = [
            464,
            1893,
            286,
            262,
            1578,
            1829,
            11,
            290,
            262,
            1893,
            286,
            262,
            1578,
            7526,
            11,
            423,
            587,
            287,
            262,
            2635,
        ]  # The president of the United States, and the president of the United Kingdom, have been in the White

patrickvonplaten's avatar
patrickvonplaten committed
465
        output_ids = model.generate(input_ids, do_sample=False)
466
        self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)