test_modeling_tf_gpt2.py 15.5 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
from transformers import GPT2Config, is_tf_available
thomwolf's avatar
thomwolf committed
20

21
from .test_configuration_common import ConfigTester
22
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
23
from .utils import require_tf, slow
thomwolf's avatar
thomwolf committed
24
25


26
if is_tf_available():
thomwolf's avatar
thomwolf committed
27
    import tensorflow as tf
28
29
30
31
    from transformers.modeling_tf_gpt2 import (
        TFGPT2Model,
        TFGPT2LMHeadModel,
        TFGPT2DoubleHeadsModel,
32
        TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
33
        shape_list,
34
    )
thomwolf's avatar
thomwolf committed
35
36


37
@require_tf
38
class TFGPT2ModelTest(TFModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
39

40
    all_model_classes = (TFGPT2Model, TFGPT2LMHeadModel, TFGPT2DoubleHeadsModel) if is_tf_available() else ()
41
    all_generative_model_classes = (TFGPT2LMHeadModel,) if is_tf_available() else ()
thomwolf's avatar
thomwolf committed
42
43

    class TFGPT2ModelTester(object):
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_token_type_ids=True,
            use_input_mask=True,
            use_labels=True,
            use_mc_token_ids=True,
            vocab_size=99,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
thomwolf's avatar
thomwolf committed
70
71
72
73
74
75
76
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_token_type_ids = use_token_type_ids
            self.use_input_mask = use_input_mask
            self.use_labels = use_labels
77
            self.use_mc_token_ids = use_mc_token_ids
thomwolf's avatar
thomwolf committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope
93
94
            self.bos_token_id = vocab_size - 1
            self.eos_token_id = vocab_size - 1
thomwolf's avatar
thomwolf committed
95
96
97
98
99
100
101
102
103
104
105
106

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            input_mask = None
            if self.use_input_mask:
                input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

            token_type_ids = None
            if self.use_token_type_ids:
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

107
108
109
110
            mc_token_ids = None
            if self.use_mc_token_ids:
                mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

thomwolf's avatar
thomwolf committed
111
112
113
114
115
116
117
118
119
            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

            config = GPT2Config(
thomwolf's avatar
thomwolf committed
120
                vocab_size=self.vocab_size,
thomwolf's avatar
thomwolf committed
121
122
123
124
125
126
127
128
                n_embd=self.hidden_size,
                n_layer=self.num_hidden_layers,
                n_head=self.num_attention_heads,
                # intermediate_size=self.intermediate_size,
                # hidden_act=self.hidden_act,
                # hidden_dropout_prob=self.hidden_dropout_prob,
                # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                n_positions=self.max_position_embeddings,
129
                n_ctx=self.max_position_embeddings,
thomwolf's avatar
thomwolf committed
130
131
                # type_vocab_size=self.type_vocab_size,
                # initializer_range=self.initializer_range
132
                bos_token_id=self.bos_token_id,
133
                eos_token_id=self.eos_token_id,
thomwolf's avatar
thomwolf committed
134
135
136
137
            )

            head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

138
139
140
141
142
143
144
145
146
147
148
            return (
                config,
                input_ids,
                input_mask,
                head_mask,
                token_type_ids,
                mc_token_ids,
                sequence_labels,
                token_labels,
                choice_labels,
            )
thomwolf's avatar
thomwolf committed
149
150
151

        def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
            model = TFGPT2Model(config=config)
152
153
154
155
156
            inputs = {
                "input_ids": input_ids,
                "attention_mask": input_mask,
                "token_type_ids": token_type_ids,
            }
thomwolf's avatar
thomwolf committed
157
158
159
160
161
162
163
164
165
166
167
            sequence_output = model(inputs)[0]

            inputs = [input_ids, None, input_mask]  # None is the input for 'past'
            sequence_output = model(inputs)[0]

            sequence_output = model(input_ids)[0]

            result = {
                "sequence_output": sequence_output.numpy(),
            }
            self.parent.assertListEqual(
168
                list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size],
169
            )
thomwolf's avatar
thomwolf committed
170

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
        def create_and_check_gpt2_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
            model = TFGPT2Model(config=config)

            # first forward pass
            output, past = model(input_ids, token_type_ids=token_type_ids)

            # create hypothetical next token and extent to next_input_ids
            next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
            next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size)

            # append to next input_ids and token_type_ids
            next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
            next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1)

            output_from_no_past, _ = model(next_input_ids, token_type_ids=next_token_type_ids)
            output_from_past, _ = model(next_tokens, token_type_ids=next_token_types, past=past)

            # select random slice
            random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
            output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
            output_from_past_slice = output_from_past[:, 0, random_slice_idx]

            # test that outputs are equal for slice
194
            tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

        def create_and_check_gpt2_model_attention_mask_past(
            self, config, input_ids, input_mask, head_mask, token_type_ids, *args
        ):
            model = TFGPT2Model(config=config)

            # create attention mask
            half_seq_length = self.seq_length // 2
            attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32)
            attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32)
            attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1)

            # first forward pass
            output, past = model(input_ids, attention_mask=attn_mask)

            # create hypothetical next token and extent to next_input_ids
            next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

            # change a random masked slice from input_ids
            random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1
            random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size)
            vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change)
            condition = tf.transpose(
                tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size))
            )
            input_ids = tf.where(condition, random_other_next_tokens, input_ids)

            # append to next input_ids and attn_mask
            next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
            attn_mask = tf.concat([attn_mask, tf.ones((shape_list(attn_mask)[0], 1), dtype=tf.int32)], axis=1)

            # get two different outputs
            output_from_no_past, _ = model(next_input_ids, attention_mask=attn_mask)
            output_from_past, _ = model(next_tokens, past=past, attention_mask=attn_mask)

            # select random slice
            random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
            output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
            output_from_past_slice = output_from_past[:, 0, random_slice_idx]

            # test that outputs are equal for slice
            tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-12)

thomwolf's avatar
thomwolf committed
238
239
        def create_and_check_gpt2_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
            model = TFGPT2LMHeadModel(config=config)
240
241
242
243
244
            inputs = {
                "input_ids": input_ids,
                "attention_mask": input_mask,
                "token_type_ids": token_type_ids,
            }
thomwolf's avatar
thomwolf committed
245
246
247
248
249
            prediction_scores = model(inputs)[0]
            result = {
                "prediction_scores": prediction_scores.numpy(),
            }
            self.parent.assertListEqual(
250
                list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size],
251
            )
thomwolf's avatar
thomwolf committed
252

253
254
255
        def create_and_check_gpt2_double_head(
            self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args
        ):
256
257
258
259
260
261
            model = TFGPT2DoubleHeadsModel(config=config)

            multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
            multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
            multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))

262
263
264
265
266
            inputs = {
                "input_ids": multiple_choice_inputs_ids,
                "mc_token_ids": mc_token_ids,
                "attention_mask": multiple_choice_input_mask,
                "token_type_ids": multiple_choice_token_type_ids,
267
            }
268
269
            lm_logits, mc_logits = model(inputs)[:2]
            result = {"lm_logits": lm_logits.numpy(), "mc_logits": mc_logits.numpy()}
270
            self.parent.assertListEqual(
271
                list(result["lm_logits"].shape), [self.batch_size, self.num_choices, self.seq_length, self.vocab_size],
272
273
            )
            self.parent.assertListEqual(list(result["mc_logits"].shape), [self.batch_size, self.num_choices])
thomwolf's avatar
thomwolf committed
274
275
276
277

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()

278
279
280
281
282
283
284
285
286
287
288
289
            (
                config,
                input_ids,
                input_mask,
                head_mask,
                token_type_ids,
                mc_token_ids,
                sequence_labels,
                token_labels,
                choice_labels,
            ) = config_and_inputs

290
291
292
293
294
            inputs_dict = {
                "input_ids": input_ids,
                "token_type_ids": token_type_ids,
                "attention_mask": input_mask,
            }
thomwolf's avatar
thomwolf committed
295
296
297
298
            return config, inputs_dict

    def setUp(self):
        self.model_tester = TFGPT2ModelTest.TFGPT2ModelTester(self)
299
        self.config_tester = ConfigTester(self, config_class=GPT2Config, n_embd=37)
thomwolf's avatar
thomwolf committed
300
301
302
303
304
305
306
307

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_gpt2_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model(*config_and_inputs)

308
309
310
311
312
313
314
315
    def test_gpt2_model_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_past(*config_and_inputs)

    def test_gpt2_model_att_mask_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_attention_mask_past(*config_and_inputs)

thomwolf's avatar
thomwolf committed
316
317
318
319
320
321
322
323
    def test_gpt2_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_lm_head(*config_and_inputs)

    def test_gpt2_double_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_double_head(*config_and_inputs)

324
    @slow
thomwolf's avatar
thomwolf committed
325
    def test_model_from_pretrained(self):
326
        for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
327
            model = TFGPT2Model.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
328
            self.assertIsNotNone(model)
329
330


331
@require_tf
332
class TFGPT2ModelLanguageGenerationTest(unittest.TestCase):
patrickvonplaten's avatar
patrickvonplaten committed
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
    @slow
    def test_lm_generate_gpt2(self):
        model = TFGPT2LMHeadModel.from_pretrained("gpt2")
        input_ids = tf.convert_to_tensor([[464, 3290]], dtype=tf.int32)  # The dog
        expected_output_ids = [
            464,
            3290,
            373,
            1043,
            287,
            257,
            2214,
            1474,
            262,
            16246,
            286,
            2688,
            290,
            2688,
            27262,
            13,
            198,
            198,
            464,
            3290,
        ]  # The dog was found in a field near the intersection of West and West Streets.\n\nThe dog
        output_ids = model.generate(input_ids, do_sample=False)
360
        self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388

    @slow
    def test_lm_generate_distilgpt2(self):
        model = TFGPT2LMHeadModel.from_pretrained("distilgpt2")
        input_ids = tf.convert_to_tensor([[464, 1893]], dtype=tf.int32)  # The president
        expected_output_ids = [
            464,
            1893,
            286,
            262,
            1578,
            1829,
            11,
            290,
            262,
            1893,
            286,
            262,
            1578,
            7526,
            11,
            423,
            587,
            287,
            262,
            2635,
        ]  # The president of the United States, and the president of the United Kingdom, have been in the White

patrickvonplaten's avatar
patrickvonplaten committed
389
        output_ids = model.generate(input_ids, do_sample=False)
390
        self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)