test_modeling_tf_gpt2.py 9.51 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15
from __future__ import absolute_import, division, print_function
thomwolf's avatar
thomwolf committed
16

Aymeric Augustin's avatar
Aymeric Augustin committed
17
from transformers import GPT2Config, is_tf_available
thomwolf's avatar
thomwolf committed
18

19
20
from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFCommonTestCases, ids_tensor
21
from .utils import CACHE_DIR, require_tf, slow
thomwolf's avatar
thomwolf committed
22
23


24
if is_tf_available():
thomwolf's avatar
thomwolf committed
25
    import tensorflow as tf
26
27
28
29
30
31
    from transformers.modeling_tf_gpt2 import (
        TFGPT2Model,
        TFGPT2LMHeadModel,
        TFGPT2DoubleHeadsModel,
        TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP,
    )
thomwolf's avatar
thomwolf committed
32
33


34
@require_tf
thomwolf's avatar
thomwolf committed
35
36
class TFGPT2ModelTest(TFCommonTestCases.TFCommonModelTester):

37
    all_model_classes = (TFGPT2Model, TFGPT2LMHeadModel, TFGPT2DoubleHeadsModel) if is_tf_available() else ()
38
    # all_model_classes = (TFGPT2Model, TFGPT2LMHeadModel) if is_tf_available() else ()
thomwolf's avatar
thomwolf committed
39
40

    class TFGPT2ModelTester(object):
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_token_type_ids=True,
            use_input_mask=True,
            use_labels=True,
            use_mc_token_ids=True,
            vocab_size=99,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
thomwolf's avatar
thomwolf committed
67
68
69
70
71
72
73
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_token_type_ids = use_token_type_ids
            self.use_input_mask = use_input_mask
            self.use_labels = use_labels
74
            self.use_mc_token_ids = use_mc_token_ids
thomwolf's avatar
thomwolf committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            input_mask = None
            if self.use_input_mask:
                input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

            token_type_ids = None
            if self.use_token_type_ids:
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

102
103
104
105
            mc_token_ids = None
            if self.use_mc_token_ids:
                mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

thomwolf's avatar
thomwolf committed
106
107
108
109
110
111
112
113
114
            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

            config = GPT2Config(
thomwolf's avatar
thomwolf committed
115
                vocab_size=self.vocab_size,
thomwolf's avatar
thomwolf committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
                n_embd=self.hidden_size,
                n_layer=self.num_hidden_layers,
                n_head=self.num_attention_heads,
                # intermediate_size=self.intermediate_size,
                # hidden_act=self.hidden_act,
                # hidden_dropout_prob=self.hidden_dropout_prob,
                # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                n_positions=self.max_position_embeddings,
                n_ctx=self.max_position_embeddings
                # type_vocab_size=self.type_vocab_size,
                # initializer_range=self.initializer_range
            )

            head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

131
132
133
134
135
136
137
138
139
140
141
            return (
                config,
                input_ids,
                input_mask,
                head_mask,
                token_type_ids,
                mc_token_ids,
                sequence_labels,
                token_labels,
                choice_labels,
            )
thomwolf's avatar
thomwolf committed
142
143
144

        def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
            model = TFGPT2Model(config=config)
145
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
thomwolf's avatar
thomwolf committed
146
147
148
149
150
151
152
153
154
155
156
            sequence_output = model(inputs)[0]

            inputs = [input_ids, None, input_mask]  # None is the input for 'past'
            sequence_output = model(inputs)[0]

            sequence_output = model(input_ids)[0]

            result = {
                "sequence_output": sequence_output.numpy(),
            }
            self.parent.assertListEqual(
157
158
                list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
            )
thomwolf's avatar
thomwolf committed
159
160
161

        def create_and_check_gpt2_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
            model = TFGPT2LMHeadModel(config=config)
162
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
thomwolf's avatar
thomwolf committed
163
164
165
166
167
            prediction_scores = model(inputs)[0]
            result = {
                "prediction_scores": prediction_scores.numpy(),
            }
            self.parent.assertListEqual(
168
169
                list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
            )
thomwolf's avatar
thomwolf committed
170

171
172
173
        def create_and_check_gpt2_double_head(
            self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args
        ):
174
175
176
177
178
179
            model = TFGPT2DoubleHeadsModel(config=config)

            multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
            multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
            multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))

180
181
182
183
184
            inputs = {
                "input_ids": multiple_choice_inputs_ids,
                "mc_token_ids": mc_token_ids,
                "attention_mask": multiple_choice_input_mask,
                "token_type_ids": multiple_choice_token_type_ids,
185
            }
186
187
            lm_logits, mc_logits = model(inputs)[:2]
            result = {"lm_logits": lm_logits.numpy(), "mc_logits": mc_logits.numpy()}
188
            self.parent.assertListEqual(
189
190
191
                list(result["lm_logits"].shape), [self.batch_size, self.num_choices, self.seq_length, self.vocab_size]
            )
            self.parent.assertListEqual(list(result["mc_logits"].shape), [self.batch_size, self.num_choices])
thomwolf's avatar
thomwolf committed
192
193
194
195

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()

196
197
198
199
200
201
202
203
204
205
206
207
208
            (
                config,
                input_ids,
                input_mask,
                head_mask,
                token_type_ids,
                mc_token_ids,
                sequence_labels,
                token_labels,
                choice_labels,
            ) = config_and_inputs

            inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
thomwolf's avatar
thomwolf committed
209
210
211
212
            return config, inputs_dict

    def setUp(self):
        self.model_tester = TFGPT2ModelTest.TFGPT2ModelTester(self)
213
        self.config_tester = ConfigTester(self, config_class=GPT2Config, n_embd=37)
thomwolf's avatar
thomwolf committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_gpt2_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model(*config_and_inputs)

    def test_gpt2_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_lm_head(*config_and_inputs)

    def test_gpt2_double_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_double_head(*config_and_inputs)

230
    @slow
thomwolf's avatar
thomwolf committed
231
    def test_model_from_pretrained(self):
thomwolf's avatar
thomwolf committed
232
        for model_name in list(TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
233
            model = TFGPT2Model.from_pretrained(model_name, cache_dir=CACHE_DIR)
thomwolf's avatar
thomwolf committed
234
            self.assertIsNotNone(model)