".circleci/unittest/vscode:/vscode.git/clone" did not exist on "285753619da8bc411ab75b0a4550398d5a7697a7"
test_pipelines_conversational.py 16.6 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
import unittest

17
from transformers import (
18
19
20
21
    MODEL_FOR_CAUSAL_LM_MAPPING,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
    TF_MODEL_FOR_CAUSAL_LM_MAPPING,
    TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
22
    AutoModelForCausalLM,
23
24
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
25
26
    BlenderbotSmallForConditionalGeneration,
    BlenderbotSmallTokenizer,
27
28
    Conversation,
    ConversationalPipeline,
29
    TFAutoModelForCausalLM,
30
31
    pipeline,
)
32
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch, slow, torch_device
33

34
from .test_pipelines_common import ANY, PipelineTestCaseMeta
35
36
37
38
39


DEFAULT_DEVICE_NUM = -1 if torch_device == "cpu" else 0


40
@is_pipeline_test
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
class ConversationalPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
    model_mapping = dict(
        list(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.items())
        if MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
        else [] + list(MODEL_FOR_CAUSAL_LM_MAPPING.items())
        if MODEL_FOR_CAUSAL_LM_MAPPING
        else []
    )
    tf_model_mapping = dict(
        list(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.items())
        if TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
        else [] + list(TF_MODEL_FOR_CAUSAL_LM_MAPPING.items())
        if TF_MODEL_FOR_CAUSAL_LM_MAPPING
        else []
    )

    def run_pipeline_test(self, model, tokenizer, feature_extractor):
        conversation_agent = ConversationalPipeline(model=model, tokenizer=tokenizer)
        # Simple
        outputs = conversation_agent(Conversation("Hi there!"))
        self.assertEqual(outputs, Conversation(past_user_inputs=["Hi there!"], generated_responses=[ANY(str)]))

        # Single list
        outputs = conversation_agent([Conversation("Hi there!")])
        self.assertEqual(outputs, Conversation(past_user_inputs=["Hi there!"], generated_responses=[ANY(str)]))

        # Batch
68
69
70
71
72
        conversation_1 = Conversation("Going to the movies tonight - any suggestions?")
        conversation_2 = Conversation("What's the last book you have read?")
        self.assertEqual(len(conversation_1.past_user_inputs), 0)
        self.assertEqual(len(conversation_2.past_user_inputs), 0)

73
74
        outputs = conversation_agent([conversation_1, conversation_2])
        self.assertEqual(outputs, [conversation_1, conversation_2])
75
        self.assertEqual(
76
            outputs,
77
78
79
            [
                Conversation(
                    past_user_inputs=["Going to the movies tonight - any suggestions?"],
80
                    generated_responses=[ANY(str)],
81
                ),
82
                Conversation(past_user_inputs=["What's the last book you have read?"], generated_responses=[ANY(str)]),
83
84
85
86
87
            ],
        )

        # One conversation with history
        conversation_2.add_user_input("Why do you recommend it?")
88
89
        outputs = conversation_agent(conversation_2)
        self.assertEqual(outputs, conversation_2)
90
        self.assertEqual(
91
            outputs,
92
93
            Conversation(
                past_user_inputs=["What's the last book you have read?", "Why do you recommend it?"],
94
                generated_responses=[ANY(str), ANY(str)],
95
96
            ),
        )
97
98
99
100
        with self.assertRaises(ValueError):
            conversation_agent("Hi there!")
        with self.assertRaises(ValueError):
            conversation_agent(Conversation())
101
        # Conversation have been consumed and are not valid anymore
102
        # Inactive conversations passed to the pipeline raise a ValueError
103
104
        with self.assertRaises(ValueError):
            conversation_agent(conversation_2)
105
106
107
108
109

    @require_torch
    @slow
    def test_integration_torch_conversation(self):
        # When
110
        conversation_agent = pipeline(task="conversational", device=DEFAULT_DEVICE_NUM)
111
112
113
114
115
116
        conversation_1 = Conversation("Going to the movies tonight - any suggestions?")
        conversation_2 = Conversation("What's the last book you have read?")
        # Then
        self.assertEqual(len(conversation_1.past_user_inputs), 0)
        self.assertEqual(len(conversation_2.past_user_inputs), 0)
        # When
117
        result = conversation_agent([conversation_1, conversation_2], do_sample=False, max_length=1000)
118
119
120
121
122
123
124
125
126
127
128
129
        # Then
        self.assertEqual(result, [conversation_1, conversation_2])
        self.assertEqual(len(result[0].past_user_inputs), 1)
        self.assertEqual(len(result[1].past_user_inputs), 1)
        self.assertEqual(len(result[0].generated_responses), 1)
        self.assertEqual(len(result[1].generated_responses), 1)
        self.assertEqual(result[0].past_user_inputs[0], "Going to the movies tonight - any suggestions?")
        self.assertEqual(result[0].generated_responses[0], "The Big Lebowski")
        self.assertEqual(result[1].past_user_inputs[0], "What's the last book you have read?")
        self.assertEqual(result[1].generated_responses[0], "The Last Question")
        # When
        conversation_2.add_user_input("Why do you recommend it?")
130
        result = conversation_agent(conversation_2, do_sample=False, max_length=1000)
131
132
133
134
135
136
137
138
139
140
141
        # Then
        self.assertEqual(result, conversation_2)
        self.assertEqual(len(result.past_user_inputs), 2)
        self.assertEqual(len(result.generated_responses), 2)
        self.assertEqual(result.past_user_inputs[1], "Why do you recommend it?")
        self.assertEqual(result.generated_responses[1], "It's a good book.")

    @require_torch
    @slow
    def test_integration_torch_conversation_truncated_history(self):
        # When
142
        conversation_agent = pipeline(task="conversational", min_length_for_response=24, device=DEFAULT_DEVICE_NUM)
143
144
145
146
        conversation_1 = Conversation("Going to the movies tonight - any suggestions?")
        # Then
        self.assertEqual(len(conversation_1.past_user_inputs), 0)
        # When
147
        result = conversation_agent(conversation_1, do_sample=False, max_length=36)
148
149
150
151
152
153
154
155
        # Then
        self.assertEqual(result, conversation_1)
        self.assertEqual(len(result.past_user_inputs), 1)
        self.assertEqual(len(result.generated_responses), 1)
        self.assertEqual(result.past_user_inputs[0], "Going to the movies tonight - any suggestions?")
        self.assertEqual(result.generated_responses[0], "The Big Lebowski")
        # When
        conversation_1.add_user_input("Is it an action movie?")
156
        result = conversation_agent(conversation_1, do_sample=False, max_length=36)
157
158
159
160
161
162
        # Then
        self.assertEqual(result, conversation_1)
        self.assertEqual(len(result.past_user_inputs), 2)
        self.assertEqual(len(result.generated_responses), 2)
        self.assertEqual(result.past_user_inputs[1], "Is it an action movie?")
        self.assertEqual(result.generated_responses[1], "It's a comedy.")
163

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
    @require_torch
    def test_small_model_pt(self):
        tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
        model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
        conversation_agent = ConversationalPipeline(model=model, tokenizer=tokenizer)
        conversation = Conversation("hello")
        output = conversation_agent(conversation)
        self.assertEqual(output, Conversation(past_user_inputs=["hello"], generated_responses=["Hi"]))

    @require_tf
    def test_small_model_tf(self):
        tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
        model = TFAutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
        conversation_agent = ConversationalPipeline(model=model, tokenizer=tokenizer)
        conversation = Conversation("hello")
        output = conversation_agent(conversation)
        self.assertEqual(output, Conversation(past_user_inputs=["hello"], generated_responses=["Hi"]))

182
183
184
185
186
    @require_torch
    @slow
    def test_integration_torch_conversation_dialogpt_input_ids(self):
        tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
        model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
187
        conversation_agent = ConversationalPipeline(model=model, tokenizer=tokenizer)
188
189

        conversation_1 = Conversation("hello")
190
        inputs = conversation_agent.preprocess(conversation_1)
191
192
193
        self.assertEqual(inputs["input_ids"].tolist(), [[31373, 50256]])

        conversation_2 = Conversation("how are you ?", past_user_inputs=["hello"], generated_responses=["Hi there!"])
194
        inputs = conversation_agent.preprocess(conversation_2)
195
196
197
198
199
200
201
202
203
        self.assertEqual(
            inputs["input_ids"].tolist(), [[31373, 50256, 17250, 612, 0, 50256, 4919, 389, 345, 5633, 50256]]
        )

    @require_torch
    @slow
    def test_integration_torch_conversation_blenderbot_400M_input_ids(self):
        tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
        model = AutoModelForSeq2SeqLM.from_pretrained("facebook/blenderbot-400M-distill")
204
        conversation_agent = ConversationalPipeline(model=model, tokenizer=tokenizer)
205
206
207

        # test1
        conversation_1 = Conversation("hello")
208
        inputs = conversation_agent.preprocess(conversation_1)
209
210
211
212
213
214
215
216
217
218
        self.assertEqual(inputs["input_ids"].tolist(), [[1710, 86, 2]])

        # test2
        conversation_1 = Conversation(
            "I like lasagne.",
            past_user_inputs=["hello"],
            generated_responses=[
                " Do you like lasagne? It is a traditional Italian dish consisting of a shepherd's pie."
            ],
        )
219
        inputs = conversation_agent.preprocess(conversation_1)
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
        self.assertEqual(
            inputs["input_ids"].tolist(),
            [
                # This should be compared with the same conversation on ParlAI `safe_interactive` demo.
                [
                    1710,  # hello
                    86,
                    228,  # Double space
                    228,
                    946,
                    304,
                    398,
                    6881,
                    558,
                    964,
                    38,
                    452,
                    315,
                    265,
                    6252,
                    452,
                    322,
                    968,
                    6884,
                    3146,
                    278,
                    306,
                    265,
                    617,
                    87,
                    388,
                    75,
                    341,
                    286,
                    521,
                    21,
                    228,  # Double space
                    228,
                    281,  # I like lasagne.
                    398,
                    6881,
                    558,
                    964,
                    21,
                    2,  # EOS
265
                ],
266
267
268
            ],
        )

269
270
271
272
273
    @require_torch
    @slow
    def test_integration_torch_conversation_blenderbot_400M(self):
        tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
        model = AutoModelForSeq2SeqLM.from_pretrained("facebook/blenderbot-400M-distill")
274
        conversation_agent = ConversationalPipeline(model=model, tokenizer=tokenizer)
275
276

        conversation_1 = Conversation("hello")
277
        result = conversation_agent(
278
279
280
281
282
283
284
285
286
287
            conversation_1,
        )
        self.assertEqual(
            result.generated_responses[0],
            # ParlAI implementation output, we have a different one, but it's our
            # second best, you can check by using num_return_sequences=10
            # " Hello! How are you? I'm just getting ready to go to work, how about you?",
            " Hello! How are you doing today? I just got back from a walk with my dog.",
        )

288
        conversation_1 = Conversation("Lasagne   hello")
289
        result = conversation_agent(conversation_1, encoder_no_repeat_ngram_size=3)
290
291
        self.assertEqual(
            result.generated_responses[0],
292
            " Do you like lasagne? It is a traditional Italian dish consisting of a shepherd's pie.",
293
294
295
296
297
        )

        conversation_1 = Conversation(
            "Lasagne   hello   Lasagne is my favorite Italian dish. Do you like lasagne?   I like lasagne."
        )
298
        result = conversation_agent(
299
300
301
302
303
            conversation_1,
            encoder_no_repeat_ngram_size=3,
        )
        self.assertEqual(
            result.generated_responses[0],
304
            " Me too. I like how it can be topped with vegetables, meats, and condiments.",
305
306
        )

307
308
309
310
    @require_torch
    @slow
    def test_integration_torch_conversation_encoder_decoder(self):
        # When
Lysandre Debut's avatar
Lysandre Debut committed
311
312
        tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
        model = AutoModelForSeq2SeqLM.from_pretrained("facebook/blenderbot_small-90M")
313
        conversation_agent = ConversationalPipeline(model=model, tokenizer=tokenizer, device=DEFAULT_DEVICE_NUM)
314
315
316
317
318
319
320

        conversation_1 = Conversation("My name is Sarah and I live in London")
        conversation_2 = Conversation("Going to the movies tonight, What movie would you recommend? ")
        # Then
        self.assertEqual(len(conversation_1.past_user_inputs), 0)
        self.assertEqual(len(conversation_2.past_user_inputs), 0)
        # When
321
        result = conversation_agent([conversation_1, conversation_2], do_sample=False, max_length=1000)
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
        # Then
        self.assertEqual(result, [conversation_1, conversation_2])
        self.assertEqual(len(result[0].past_user_inputs), 1)
        self.assertEqual(len(result[1].past_user_inputs), 1)
        self.assertEqual(len(result[0].generated_responses), 1)
        self.assertEqual(len(result[1].generated_responses), 1)
        self.assertEqual(result[0].past_user_inputs[0], "My name is Sarah and I live in London")
        self.assertEqual(
            result[0].generated_responses[0],
            "hi sarah, i live in london as well. do you have any plans for the weekend?",
        )
        self.assertEqual(
            result[1].past_user_inputs[0], "Going to the movies tonight, What movie would you recommend? "
        )
        self.assertEqual(
            result[1].generated_responses[0], "i don't know... i'm not really sure. what movie are you going to see?"
        )
        # When
        conversation_1.add_user_input("Not yet, what about you?")
        conversation_2.add_user_input("What's your name?")
342
        result = conversation_agent([conversation_1, conversation_2], do_sample=False, max_length=1000)
343
344
345
346
347
348
349
350
351
352
        # Then
        self.assertEqual(result, [conversation_1, conversation_2])
        self.assertEqual(len(result[0].past_user_inputs), 2)
        self.assertEqual(len(result[1].past_user_inputs), 2)
        self.assertEqual(len(result[0].generated_responses), 2)
        self.assertEqual(len(result[1].generated_responses), 2)
        self.assertEqual(result[0].past_user_inputs[1], "Not yet, what about you?")
        self.assertEqual(result[0].generated_responses[1], "i don't have any plans yet. i'm not sure what to do yet.")
        self.assertEqual(result[1].past_user_inputs[1], "What's your name?")
        self.assertEqual(result[1].generated_responses[1], "i don't have a name, but i'm going to see a horror movie.")
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381

    @require_torch
    @slow
    def test_from_pipeline_conversation(self):
        model_id = "facebook/blenderbot_small-90M"

        # from model id
        conversation_agent_from_model_id = pipeline("conversational", model=model_id, tokenizer=model_id)

        # from model object
        model = BlenderbotSmallForConditionalGeneration.from_pretrained(model_id)
        tokenizer = BlenderbotSmallTokenizer.from_pretrained(model_id)
        conversation_agent_from_model = pipeline("conversational", model=model, tokenizer=tokenizer)

        conversation = Conversation("My name is Sarah and I live in London")
        conversation_copy = Conversation("My name is Sarah and I live in London")

        result_model_id = conversation_agent_from_model_id([conversation])
        result_model = conversation_agent_from_model([conversation_copy])

        # check for equality
        self.assertEqual(
            result_model_id.generated_responses[0],
            "hi sarah, i live in london as well. do you have any plans for the weekend?",
        )
        self.assertEqual(
            result_model_id.generated_responses[0],
            result_model.generated_responses[0],
        )