test_pipelines_conversational.py 7.34 KB
Newer Older
1
2
import unittest

3
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, Conversation, ConversationalPipeline, pipeline
4
5
6
7
8
9
10
11
from transformers.testing_utils import require_torch, slow, torch_device

from .test_pipelines_common import MonoInputPipelineCommonMixin


DEFAULT_DEVICE_NUM = -1 if torch_device == "cpu" else 0


12
class ConversationalPipelineTests(MonoInputPipelineCommonMixin, unittest.TestCase):
13
14
15
16
17
    pipeline_task = "conversational"
    small_models = []  # Models tested without the @slow decorator
    large_models = ["microsoft/DialoGPT-medium"]  # Models tested with the @slow decorator
    invalid_inputs = ["Hi there!", Conversation()]

18
19
20
    def _test_pipeline(
        self, nlp
    ):  # override the default test method to check that the output is a `Conversation` object
21
22
        self.assertIsNotNone(nlp)

23
24
25
26
        # We need to recreate conversation for successive tests to pass as
        # Conversation objects get *consumed* by the pipeline
        conversation = Conversation("Hi there!")
        mono_result = nlp(conversation)
27
28
        self.assertIsInstance(mono_result, Conversation)

29
30
        conversations = [Conversation("Hi there!"), Conversation("How are you?")]
        multi_result = nlp(conversations)
31
32
        self.assertIsInstance(multi_result, list)
        self.assertIsInstance(multi_result[0], Conversation)
33
        # Conversation have been consumed and are not valid anymore
34
        # Inactive conversations passed to the pipeline raise a ValueError
35
36
        self.assertRaises(ValueError, nlp, conversation)
        self.assertRaises(ValueError, nlp, conversations)
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

        for bad_input in self.invalid_inputs:
            self.assertRaises(Exception, nlp, bad_input)
        self.assertRaises(Exception, nlp, self.invalid_inputs)

    @require_torch
    @slow
    def test_integration_torch_conversation(self):
        # When
        nlp = pipeline(task="conversational", device=DEFAULT_DEVICE_NUM)
        conversation_1 = Conversation("Going to the movies tonight - any suggestions?")
        conversation_2 = Conversation("What's the last book you have read?")
        # Then
        self.assertEqual(len(conversation_1.past_user_inputs), 0)
        self.assertEqual(len(conversation_2.past_user_inputs), 0)
        # When
        result = nlp([conversation_1, conversation_2], do_sample=False, max_length=1000)
        # Then
        self.assertEqual(result, [conversation_1, conversation_2])
        self.assertEqual(len(result[0].past_user_inputs), 1)
        self.assertEqual(len(result[1].past_user_inputs), 1)
        self.assertEqual(len(result[0].generated_responses), 1)
        self.assertEqual(len(result[1].generated_responses), 1)
        self.assertEqual(result[0].past_user_inputs[0], "Going to the movies tonight - any suggestions?")
        self.assertEqual(result[0].generated_responses[0], "The Big Lebowski")
        self.assertEqual(result[1].past_user_inputs[0], "What's the last book you have read?")
        self.assertEqual(result[1].generated_responses[0], "The Last Question")
        # When
        conversation_2.add_user_input("Why do you recommend it?")
        result = nlp(conversation_2, do_sample=False, max_length=1000)
        # Then
        self.assertEqual(result, conversation_2)
        self.assertEqual(len(result.past_user_inputs), 2)
        self.assertEqual(len(result.generated_responses), 2)
        self.assertEqual(result.past_user_inputs[1], "Why do you recommend it?")
        self.assertEqual(result.generated_responses[1], "It's a good book.")

    @require_torch
    @slow
    def test_integration_torch_conversation_truncated_history(self):
        # When
        nlp = pipeline(task="conversational", min_length_for_response=24, device=DEFAULT_DEVICE_NUM)
        conversation_1 = Conversation("Going to the movies tonight - any suggestions?")
        # Then
        self.assertEqual(len(conversation_1.past_user_inputs), 0)
        # When
        result = nlp(conversation_1, do_sample=False, max_length=36)
        # Then
        self.assertEqual(result, conversation_1)
        self.assertEqual(len(result.past_user_inputs), 1)
        self.assertEqual(len(result.generated_responses), 1)
        self.assertEqual(result.past_user_inputs[0], "Going to the movies tonight - any suggestions?")
        self.assertEqual(result.generated_responses[0], "The Big Lebowski")
        # When
        conversation_1.add_user_input("Is it an action movie?")
        result = nlp(conversation_1, do_sample=False, max_length=36)
        # Then
        self.assertEqual(result, conversation_1)
        self.assertEqual(len(result.past_user_inputs), 2)
        self.assertEqual(len(result.generated_responses), 2)
        self.assertEqual(result.past_user_inputs[1], "Is it an action movie?")
        self.assertEqual(result.generated_responses[1], "It's a comedy.")
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

    @require_torch
    @slow
    def test_integration_torch_conversation_encoder_decoder(self):
        # When
        tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-90M")
        model = AutoModelForSeq2SeqLM.from_pretrained("facebook/blenderbot-90M")
        nlp = ConversationalPipeline(model=model, tokenizer=tokenizer, device=DEFAULT_DEVICE_NUM)

        conversation_1 = Conversation("My name is Sarah and I live in London")
        conversation_2 = Conversation("Going to the movies tonight, What movie would you recommend? ")
        # Then
        self.assertEqual(len(conversation_1.past_user_inputs), 0)
        self.assertEqual(len(conversation_2.past_user_inputs), 0)
        # When
        result = nlp([conversation_1, conversation_2], do_sample=False, max_length=1000)
        # Then
        self.assertEqual(result, [conversation_1, conversation_2])
        self.assertEqual(len(result[0].past_user_inputs), 1)
        self.assertEqual(len(result[1].past_user_inputs), 1)
        self.assertEqual(len(result[0].generated_responses), 1)
        self.assertEqual(len(result[1].generated_responses), 1)
        self.assertEqual(result[0].past_user_inputs[0], "My name is Sarah and I live in London")
        self.assertEqual(
            result[0].generated_responses[0],
            "hi sarah, i live in london as well. do you have any plans for the weekend?",
        )
        self.assertEqual(
            result[1].past_user_inputs[0], "Going to the movies tonight, What movie would you recommend? "
        )
        self.assertEqual(
            result[1].generated_responses[0], "i don't know... i'm not really sure. what movie are you going to see?"
        )
        # When
        conversation_1.add_user_input("Not yet, what about you?")
        conversation_2.add_user_input("What's your name?")
        result = nlp([conversation_1, conversation_2], do_sample=False, max_length=1000)
        # Then
        self.assertEqual(result, [conversation_1, conversation_2])
        self.assertEqual(len(result[0].past_user_inputs), 2)
        self.assertEqual(len(result[1].past_user_inputs), 2)
        self.assertEqual(len(result[0].generated_responses), 2)
        self.assertEqual(len(result[1].generated_responses), 2)
        self.assertEqual(result[0].past_user_inputs[1], "Not yet, what about you?")
        self.assertEqual(result[0].generated_responses[1], "i don't have any plans yet. i'm not sure what to do yet.")
        self.assertEqual(result[1].past_user_inputs[1], "What's your name?")
        self.assertEqual(result[1].generated_responses[1], "i don't have a name, but i'm going to see a horror movie.")