test_pipelines_conversational.py 13.5 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
import unittest

17
18
19
20
21
22
23
24
from transformers import (
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    Conversation,
    ConversationalPipeline,
    is_torch_available,
    pipeline,
)
25
from transformers.testing_utils import is_pipeline_test, require_torch, slow, torch_device
26
27
28
29

from .test_pipelines_common import MonoInputPipelineCommonMixin


30
31
32
33
34
if is_torch_available():
    import torch

    from transformers.models.gpt2 import GPT2Config, GPT2LMHeadModel

35
36
37
DEFAULT_DEVICE_NUM = -1 if torch_device == "cpu" else 0


38
@is_pipeline_test
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
class SimpleConversationPipelineTests(unittest.TestCase):
    def get_pipeline(self):
        # When
        config = GPT2Config(
            vocab_size=263,
            n_ctx=128,
            max_length=128,
            n_embd=64,
            n_layer=1,
            n_head=8,
            bos_token_id=256,
            eos_token_id=257,
        )
        model = GPT2LMHeadModel(config)
        # Force model output to be L
        V, D = model.lm_head.weight.shape
        bias = torch.zeros(V, requires_grad=True)
56
        weight = torch.zeros((V, D), requires_grad=True)
57
58
59
        bias[76] = 1

        model.lm_head.bias = torch.nn.Parameter(bias)
60
        model.lm_head.weight = torch.nn.Parameter(weight)
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

        # # Created with:
        # import tempfile

        # from tokenizers import Tokenizer, models
        # from transformers.tokenization_utils_fast import PreTrainedTokenizerFast

        # vocab = [(chr(i), i) for i in range(256)]
        # tokenizer = Tokenizer(models.Unigram(vocab))
        # with tempfile.NamedTemporaryFile() as f:
        #     tokenizer.save(f.name)
        #     real_tokenizer = PreTrainedTokenizerFast(tokenizer_file=f.name, eos_token="<eos>", bos_token="<bos>")

        # real_tokenizer._tokenizer.save("dummy.json")
        # Special tokens are automatically added at load time.
        tokenizer = AutoTokenizer.from_pretrained("Narsil/small_conversational_test")
        conversation_agent = pipeline(
            task="conversational", device=DEFAULT_DEVICE_NUM, model=model, tokenizer=tokenizer
        )
        return conversation_agent

    @require_torch
    def test_integration_torch_conversation(self):
        conversation_agent = self.get_pipeline()
        conversation_1 = Conversation("Going to the movies tonight - any suggestions?")
        conversation_2 = Conversation("What's the last book you have read?")
        self.assertEqual(len(conversation_1.past_user_inputs), 0)
        self.assertEqual(len(conversation_2.past_user_inputs), 0)

        with self.assertLogs("transformers", level="WARNING") as log:
            result = conversation_agent([conversation_1, conversation_2], max_length=48)
            self.assertEqual(len(log.output), 2)
            self.assertIn("You might consider trimming the early phase of the conversation", log.output[0])
            self.assertIn("Setting `pad_token_id`", log.output[1])

        # Two conversations in one pass
        self.assertEqual(result, [conversation_1, conversation_2])
        self.assertEqual(
            result,
            [
                Conversation(
                    None,
                    past_user_inputs=["Going to the movies tonight - any suggestions?"],
                    generated_responses=["L"],
                ),
                Conversation(
                    None, past_user_inputs=["What's the last book you have read?"], generated_responses=["L"]
                ),
            ],
        )

        # One conversation with history
        conversation_2.add_user_input("Why do you recommend it?")
        with self.assertLogs("transformers", level="WARNING") as log:
            result = conversation_agent(conversation_2, max_length=64)
            self.assertEqual(len(log.output), 3)
            self.assertIn("Cutting history off because it's too long", log.output[0])
            self.assertIn("You might consider trimming the early phase of the conversation", log.output[1])
            self.assertIn("Setting `pad_token_id`", log.output[2])

        self.assertEqual(result, conversation_2)
        self.assertEqual(
            result,
            Conversation(
                None,
                past_user_inputs=["What's the last book you have read?", "Why do you recommend it?"],
                generated_responses=["L", "L"],
            ),
        )

    @require_torch
    def test_history_cache(self):
        conversation_agent = self.get_pipeline()
        conversation = Conversation(
            "Why do you recommend it?",
            past_user_inputs=["What's the last book you have read?"],
            generated_responses=["b"],
        )
        with self.assertLogs("transformers", level="WARNING") as log:
140
            _ = conversation_agent(conversation, max_length=64)
141
            self.assertEqual(len(log.output), 3)
142
143
            self.assertIn("Cutting history off because it's too long (63 > 32) for underlying model", log.output[0])
            self.assertIn("63 is bigger than 0.9 * max_length: 64", log.output[1])
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
            self.assertIn("Setting `pad_token_id`", log.output[2])
        self.assertEqual(conversation._index, 1)
        self.assertEqual(
            conversation._history,
            [
                87,
                104,
                97,
                116,
                39,
                115,
                32,
                116,
                104,
                101,
                32,
                108,
                97,
                115,
                116,
                32,
                98,
                111,
                111,
                107,
                32,
                121,
                111,
                117,
                32,
                104,
                97,
                118,
                101,
                32,
                114,
                101,
                97,
                100,
                63,
                259,  # EOS
                98,  # b
                259,  # EOS
            ],
        )


191
class ConversationalPipelineTests(MonoInputPipelineCommonMixin, unittest.TestCase):
192
193
194
195
196
    pipeline_task = "conversational"
    small_models = []  # Models tested without the @slow decorator
    large_models = ["microsoft/DialoGPT-medium"]  # Models tested with the @slow decorator
    invalid_inputs = ["Hi there!", Conversation()]

197
198
199
    def _test_pipeline(
        self, nlp
    ):  # override the default test method to check that the output is a `Conversation` object
200
201
        self.assertIsNotNone(nlp)

202
203
204
205
        # We need to recreate conversation for successive tests to pass as
        # Conversation objects get *consumed* by the pipeline
        conversation = Conversation("Hi there!")
        mono_result = nlp(conversation)
206
207
        self.assertIsInstance(mono_result, Conversation)

208
209
        conversations = [Conversation("Hi there!"), Conversation("How are you?")]
        multi_result = nlp(conversations)
210
211
        self.assertIsInstance(multi_result, list)
        self.assertIsInstance(multi_result[0], Conversation)
212
        # Conversation have been consumed and are not valid anymore
213
        # Inactive conversations passed to the pipeline raise a ValueError
214
215
        self.assertRaises(ValueError, nlp, conversation)
        self.assertRaises(ValueError, nlp, conversations)
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

        for bad_input in self.invalid_inputs:
            self.assertRaises(Exception, nlp, bad_input)
        self.assertRaises(Exception, nlp, self.invalid_inputs)

    @require_torch
    @slow
    def test_integration_torch_conversation(self):
        # When
        nlp = pipeline(task="conversational", device=DEFAULT_DEVICE_NUM)
        conversation_1 = Conversation("Going to the movies tonight - any suggestions?")
        conversation_2 = Conversation("What's the last book you have read?")
        # Then
        self.assertEqual(len(conversation_1.past_user_inputs), 0)
        self.assertEqual(len(conversation_2.past_user_inputs), 0)
        # When
        result = nlp([conversation_1, conversation_2], do_sample=False, max_length=1000)
        # Then
        self.assertEqual(result, [conversation_1, conversation_2])
        self.assertEqual(len(result[0].past_user_inputs), 1)
        self.assertEqual(len(result[1].past_user_inputs), 1)
        self.assertEqual(len(result[0].generated_responses), 1)
        self.assertEqual(len(result[1].generated_responses), 1)
        self.assertEqual(result[0].past_user_inputs[0], "Going to the movies tonight - any suggestions?")
        self.assertEqual(result[0].generated_responses[0], "The Big Lebowski")
        self.assertEqual(result[1].past_user_inputs[0], "What's the last book you have read?")
        self.assertEqual(result[1].generated_responses[0], "The Last Question")
        # When
        conversation_2.add_user_input("Why do you recommend it?")
        result = nlp(conversation_2, do_sample=False, max_length=1000)
        # Then
        self.assertEqual(result, conversation_2)
        self.assertEqual(len(result.past_user_inputs), 2)
        self.assertEqual(len(result.generated_responses), 2)
        self.assertEqual(result.past_user_inputs[1], "Why do you recommend it?")
        self.assertEqual(result.generated_responses[1], "It's a good book.")

    @require_torch
    @slow
    def test_integration_torch_conversation_truncated_history(self):
        # When
        nlp = pipeline(task="conversational", min_length_for_response=24, device=DEFAULT_DEVICE_NUM)
        conversation_1 = Conversation("Going to the movies tonight - any suggestions?")
        # Then
        self.assertEqual(len(conversation_1.past_user_inputs), 0)
        # When
        result = nlp(conversation_1, do_sample=False, max_length=36)
        # Then
        self.assertEqual(result, conversation_1)
        self.assertEqual(len(result.past_user_inputs), 1)
        self.assertEqual(len(result.generated_responses), 1)
        self.assertEqual(result.past_user_inputs[0], "Going to the movies tonight - any suggestions?")
        self.assertEqual(result.generated_responses[0], "The Big Lebowski")
        # When
        conversation_1.add_user_input("Is it an action movie?")
        result = nlp(conversation_1, do_sample=False, max_length=36)
        # Then
        self.assertEqual(result, conversation_1)
        self.assertEqual(len(result.past_user_inputs), 2)
        self.assertEqual(len(result.generated_responses), 2)
        self.assertEqual(result.past_user_inputs[1], "Is it an action movie?")
        self.assertEqual(result.generated_responses[1], "It's a comedy.")
278
279
280
281
282

    @require_torch
    @slow
    def test_integration_torch_conversation_encoder_decoder(self):
        # When
Lysandre Debut's avatar
Lysandre Debut committed
283
284
        tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
        model = AutoModelForSeq2SeqLM.from_pretrained("facebook/blenderbot_small-90M")
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
        nlp = ConversationalPipeline(model=model, tokenizer=tokenizer, device=DEFAULT_DEVICE_NUM)

        conversation_1 = Conversation("My name is Sarah and I live in London")
        conversation_2 = Conversation("Going to the movies tonight, What movie would you recommend? ")
        # Then
        self.assertEqual(len(conversation_1.past_user_inputs), 0)
        self.assertEqual(len(conversation_2.past_user_inputs), 0)
        # When
        result = nlp([conversation_1, conversation_2], do_sample=False, max_length=1000)
        # Then
        self.assertEqual(result, [conversation_1, conversation_2])
        self.assertEqual(len(result[0].past_user_inputs), 1)
        self.assertEqual(len(result[1].past_user_inputs), 1)
        self.assertEqual(len(result[0].generated_responses), 1)
        self.assertEqual(len(result[1].generated_responses), 1)
        self.assertEqual(result[0].past_user_inputs[0], "My name is Sarah and I live in London")
        self.assertEqual(
            result[0].generated_responses[0],
            "hi sarah, i live in london as well. do you have any plans for the weekend?",
        )
        self.assertEqual(
            result[1].past_user_inputs[0], "Going to the movies tonight, What movie would you recommend? "
        )
        self.assertEqual(
            result[1].generated_responses[0], "i don't know... i'm not really sure. what movie are you going to see?"
        )
        # When
        conversation_1.add_user_input("Not yet, what about you?")
        conversation_2.add_user_input("What's your name?")
        result = nlp([conversation_1, conversation_2], do_sample=False, max_length=1000)
        # Then
        self.assertEqual(result, [conversation_1, conversation_2])
        self.assertEqual(len(result[0].past_user_inputs), 2)
        self.assertEqual(len(result[1].past_user_inputs), 2)
        self.assertEqual(len(result[0].generated_responses), 2)
        self.assertEqual(len(result[1].generated_responses), 2)
        self.assertEqual(result[0].past_user_inputs[1], "Not yet, what about you?")
        self.assertEqual(result[0].generated_responses[1], "i don't have any plans yet. i'm not sure what to do yet.")
        self.assertEqual(result[1].past_user_inputs[1], "What's your name?")
        self.assertEqual(result[1].generated_responses[1], "i don't have a name, but i'm going to see a horror movie.")