test_tokenization_xlm.py 3.21 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

Aymeric Augustin's avatar
Aymeric Augustin committed
17
import json
thomwolf's avatar
thomwolf committed
18
import os
19
import unittest
thomwolf's avatar
thomwolf committed
20

Sylvain Gugger's avatar
Sylvain Gugger committed
21
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer
22
from transformers.testing_utils import slow
thomwolf's avatar
thomwolf committed
23

24
from .test_tokenization_common import TokenizerTesterMixin
thomwolf's avatar
thomwolf committed
25

26

27
class XLMTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
28

29
    tokenizer_class = XLMTokenizer
30
    test_rust_tokenizer = False
31
32

    def setUp(self):
Julien Chaumond's avatar
Julien Chaumond committed
33
        super().setUp()
34
35

        # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
        vocab = [
            "l",
            "o",
            "w",
            "e",
            "r",
            "s",
            "t",
            "i",
            "d",
            "n",
            "w</w>",
            "r</w>",
            "t</w>",
            "lo",
            "low",
            "er</w>",
            "low</w>",
            "lowest</w>",
            "newer</w>",
            "wider</w>",
            "<unk>",
        ]
thomwolf's avatar
thomwolf committed
59
60
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        merges = ["l o 123", "lo w 1456", "e r</w> 1789", ""]
61

62
63
        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
64
65
66
67
        with open(self.vocab_file, "w") as fp:
            fp.write(json.dumps(vocab_tokens))
        with open(self.merges_file, "w") as fp:
            fp.write("\n".join(merges))
68

69
    def get_input_output_texts(self, tokenizer):
70
71
        input_text = "lower newer"
        output_text = "lower newer"
72
        return input_text, output_text
73

74
75
76
    def test_full_tokenizer(self):
        """ Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt """
        tokenizer = XLMTokenizer(self.vocab_file, self.merges_file)
77

78
79
80
81
        text = "lower"
        bpe_tokens = ["low", "er</w>"]
        tokens = tokenizer.tokenize(text)
        self.assertListEqual(tokens, bpe_tokens)
82

83
84
        input_tokens = tokens + ["<unk>"]
        input_bpe_tokens = [14, 15, 20]
85
        self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
thomwolf's avatar
thomwolf committed
86

87
    @slow
88
89
90
    def test_sequence_builders(self):
        tokenizer = XLMTokenizer.from_pretrained("xlm-mlm-en-2048")

Lysandre's avatar
Remove  
Lysandre committed
91
92
        text = tokenizer.encode("sequence builders", add_special_tokens=False)
        text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False)
93

94
95
        encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
        encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
96

97
98
        assert encoded_sentence == [0] + text + [1]
        assert encoded_pair == [0] + text + [1] + text_2 + [1]