test_tokenization_xlm.py 3.33 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function, unicode_literals

Aymeric Augustin's avatar
Aymeric Augustin committed
17
import json
thomwolf's avatar
thomwolf committed
18
19
import os

Aymeric Augustin's avatar
Aymeric Augustin committed
20
from transformers.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer
thomwolf's avatar
thomwolf committed
21

22
from .test_tokenization_commo import CommonTestCases
23
from .utils import slow
thomwolf's avatar
thomwolf committed
24

25

26
class XLMTokenizationTest(CommonTestCases.CommonTokenizerTester):
thomwolf's avatar
thomwolf committed
27

28
29
30
31
32
33
    tokenizer_class = XLMTokenizer

    def setUp(self):
        super(XLMTokenizationTest, self).setUp()

        # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
        vocab = [
            "l",
            "o",
            "w",
            "e",
            "r",
            "s",
            "t",
            "i",
            "d",
            "n",
            "w</w>",
            "r</w>",
            "t</w>",
            "lo",
            "low",
            "er</w>",
            "low</w>",
            "lowest</w>",
            "newer</w>",
            "wider</w>",
            "<unk>",
        ]
thomwolf's avatar
thomwolf committed
57
58
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        merges = ["l o 123", "lo w 1456", "e r</w> 1789", ""]
59

60
61
        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
62
63
64
65
        with open(self.vocab_file, "w") as fp:
            fp.write(json.dumps(vocab_tokens))
        with open(self.merges_file, "w") as fp:
            fp.write("\n".join(merges))
66

67
68
    def get_tokenizer(self, **kwargs):
        return XLMTokenizer.from_pretrained(self.tmpdirname, **kwargs)
69

70
    def get_input_output_texts(self):
71
72
        input_text = "lower newer"
        output_text = "lower newer"
73
        return input_text, output_text
74

75
76
77
    def test_full_tokenizer(self):
        """ Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt """
        tokenizer = XLMTokenizer(self.vocab_file, self.merges_file)
78

79
80
81
82
        text = "lower"
        bpe_tokens = ["low", "er</w>"]
        tokens = tokenizer.tokenize(text)
        self.assertListEqual(tokens, bpe_tokens)
83

84
85
        input_tokens = tokens + ["<unk>"]
        input_bpe_tokens = [14, 15, 20]
86
        self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
thomwolf's avatar
thomwolf committed
87

88
    @slow
89
90
91
    def test_sequence_builders(self):
        tokenizer = XLMTokenizer.from_pretrained("xlm-mlm-en-2048")

Lysandre's avatar
Remove  
Lysandre committed
92
93
        text = tokenizer.encode("sequence builders", add_special_tokens=False)
        text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False)
94

95
96
        encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
        encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
97
98
99

        assert encoded_sentence == [1] + text + [1]
        assert encoded_pair == [1] + text + [1] + text_2 + [1]