test_tokenization_xlm.py 3.27 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

Aymeric Augustin's avatar
Aymeric Augustin committed
17
import json
thomwolf's avatar
thomwolf committed
18
import os
19
import unittest
thomwolf's avatar
thomwolf committed
20

Aymeric Augustin's avatar
Aymeric Augustin committed
21
from transformers.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer
thomwolf's avatar
thomwolf committed
22

23
from .test_tokenization_common import TokenizerTesterMixin
24
from .utils import slow
thomwolf's avatar
thomwolf committed
25

26

27
class XLMTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
28

29
30
31
32
33
34
    tokenizer_class = XLMTokenizer

    def setUp(self):
        super(XLMTokenizationTest, self).setUp()

        # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
        vocab = [
            "l",
            "o",
            "w",
            "e",
            "r",
            "s",
            "t",
            "i",
            "d",
            "n",
            "w</w>",
            "r</w>",
            "t</w>",
            "lo",
            "low",
            "er</w>",
            "low</w>",
            "lowest</w>",
            "newer</w>",
            "wider</w>",
            "<unk>",
        ]
thomwolf's avatar
thomwolf committed
58
59
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        merges = ["l o 123", "lo w 1456", "e r</w> 1789", ""]
60

61
62
        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
63
64
65
66
        with open(self.vocab_file, "w") as fp:
            fp.write(json.dumps(vocab_tokens))
        with open(self.merges_file, "w") as fp:
            fp.write("\n".join(merges))
67

68
69
    def get_tokenizer(self, **kwargs):
        return XLMTokenizer.from_pretrained(self.tmpdirname, **kwargs)
70

71
    def get_input_output_texts(self):
72
73
        input_text = "lower newer"
        output_text = "lower newer"
74
        return input_text, output_text
75

76
77
78
    def test_full_tokenizer(self):
        """ Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt """
        tokenizer = XLMTokenizer(self.vocab_file, self.merges_file)
79

80
81
82
83
        text = "lower"
        bpe_tokens = ["low", "er</w>"]
        tokens = tokenizer.tokenize(text)
        self.assertListEqual(tokens, bpe_tokens)
84

85
86
        input_tokens = tokens + ["<unk>"]
        input_bpe_tokens = [14, 15, 20]
87
        self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
thomwolf's avatar
thomwolf committed
88

89
    @slow
90
91
92
    def test_sequence_builders(self):
        tokenizer = XLMTokenizer.from_pretrained("xlm-mlm-en-2048")

Lysandre's avatar
Remove  
Lysandre committed
93
94
        text = tokenizer.encode("sequence builders", add_special_tokens=False)
        text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False)
95

96
97
        encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
        encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
98
99
100

        assert encoded_sentence == [1] + text + [1]
        assert encoded_pair == [1] + text + [1] + text_2 + [1]