run_seq2seq_finetuning.py 7.4 KB
Newer Older
Rémi Louf's avatar
Rémi Louf committed
1
# coding=utf-8
2
# Copyright 2018 The Microsoft Reseach team and The HuggingFace Inc. team.
Rémi Louf's avatar
Rémi Louf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2018 Microsoft and The HuggingFace Inc.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Rémi Louf's avatar
Rémi Louf committed
16
""" Finetuning seq2seq models for sequence generation."""
Rémi Louf's avatar
Rémi Louf committed
17

18
import argparse
Rémi Louf's avatar
Rémi Louf committed
19
from collections import deque
Rémi Louf's avatar
Rémi Louf committed
20
import logging
21
import pickle
Rémi Louf's avatar
Rémi Louf committed
22
import random
23
import os
Rémi Louf's avatar
Rémi Louf committed
24
25
26

import numpy as np
import torch
27
from torch.utils.data import Dataset
Rémi Louf's avatar
Rémi Louf committed
28

29
from transformers import BertTokenizer
30

Rémi Louf's avatar
Rémi Louf committed
31
32
33
34
35
36
37
38
39
logger = logging.getLogger(__name__)


def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)


40
41
42
43
# ------------
# Load dataset
# ------------

Rémi Louf's avatar
Rémi Louf committed
44

45
class TextDataset(Dataset):
46
    """ Abstracts the dataset used to train seq2seq models.
47
48
49

    CNN/Daily News:

50
51
52
53
    The CNN/Daily News raw datasets are downloaded from [1]. The stories are
    stored in different files; the summary appears at the end of the story as
    sentences that are prefixed by the special `@highlight` line. To process
    the data, untar both datasets in the same folder, and pass the path to this
54
    folder as the "data_dir argument. The formatting code was inspired by [2].
55

56
57
    [1] https://cs.nyu.edu/~kcho/
    [2] https://github.com/abisee/cnn-dailymail/
58
    """
59
60

    def __init_(self, tokenizer, data_dir="", block_size=512):
61
        assert os.path.isdir(data_dir)
62

63
        # Load features that have already been computed if present
64
65
66
        cached_features_file = os.path.join(
            data_dir, "cached_lm_{}_{}".format(block_size, data_dir)
        )
67
68
69
70
        if os.path.exists(cached_features_file):
            logger.info("Loading features from cached file %s", cached_features_file)
            with open(cached_features_file, "rb") as source:
                self.examples = pickle.load(source)
71
72
                return

73
        logger.info("Creating features from dataset at %s", data_dir)
74

75
        datasets = ["cnn", "dailymail"]
76
77
78
79
        for dataset in datasets:
            path_to_stories = os.path.join(data_dir, dataset, "stories")
            assert os.path.isdir(path_to_stories)

Rémi Louf's avatar
Rémi Louf committed
80
81
82
            story_filenames_list = os.listdir(path_to_stories)
            for story_filename in story_filenames_list:
                path_to_story = os.path.join(path_to_stories, story_filename)
Rémi Louf's avatar
Rémi Louf committed
83
                if not os.path.isfile(path_to_story):
84
85
86
87
                    continue

                with open(path_to_story, encoding="utf-8") as source:
                    try:
Rémi Louf's avatar
Rémi Louf committed
88
89
                        raw_story = source.read()
                        story, summary = process_story(raw_story)
Rémi Louf's avatar
Rémi Louf committed
90
                    except IndexError:  # skip ill-formed stories
91
92
                        continue

93
                summary = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(summary))
94
95
96
97
                summary_seq = _fit_to_block_size(summary, block_size)

                story = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(story))
                story_seq = _fit_to_block_size(story, block_size)
Rémi Louf's avatar
Rémi Louf committed
98
99
100

                self.examples.append(
                    tokenizer.add_special_token_sequence_pair(story_seq, summary_seq)
101
                )
102
103
104
105

        logger.info("Saving features into cache file %s", cached_features_file)
        with open(cached_features_file, "wb") as sink:
            pickle.dump(self.examples, sink, protocole=pickle.HIGHEST_PROTOCOL)
106
107
108
109

    def __len__(self):
        return len(self.examples)

Rémi Louf's avatar
Rémi Louf committed
110
    def __getitem__(self, items):
111
112
113
        return torch.tensor(self.examples[items])


Rémi Louf's avatar
Rémi Louf committed
114
def process_story(raw_story):
Rémi Louf's avatar
Rémi Louf committed
115
116
117
118
119
120
121
    """ Extract the story and summary from a story file.

    Attributes:
        raw_story (str): content of the story file as an utf-8 encoded string.

    Raises:
        IndexError: If the stoy is empty or contains no highlights.
122
    """
123
124
125
    file_lines = list(
        filter(lambda x: len(x) != 0, [line.strip() for line in raw_story.split("\n")])
    )
126
127
128
129
130
131

    # for some unknown reason some lines miss a period, add it
    file_lines = [_add_missing_period(line) for line in file_lines]

    # gather article lines
    story_lines = []
Rémi Louf's avatar
Rémi Louf committed
132
    lines = deque(file_lines)
133
134
135
136
137
138
139
140
141
142
    while True:
        try:
            element = lines.popleft()
            if element.startswith("@highlight"):
                break
            story_lines.append(element)
        except IndexError as ie:  # if "@highlight" absent from file
            raise ie

    # gather summary lines
Rémi Louf's avatar
Rémi Louf committed
143
    highlights_lines = list(filter(lambda t: not t.startswith("@highlight"), lines))
144
145
146
147
148
149
150
151
152

    # join the lines
    story = " ".join(story_lines)
    summary = " ".join(highlights_lines)

    return story, summary


def _add_missing_period(line):
153
    END_TOKENS = [".", "!", "?", "...", "'", "`", '"', u"\u2019", u"\u2019", ")"]
Rémi Louf's avatar
Rémi Louf committed
154
    if line.startswith("@highlight"):
155
156
157
        return line
    if line[-1] in END_TOKENS:
        return line
Rémi Louf's avatar
Rémi Louf committed
158
    return line + "."
159
160


161
def _fit_to_block_size(sequence, block_size):
162
    """ Adapt the source and target sequences' lengths to the block size.
163
164
    If the sequence is shorter than the block size we pad it with -1 ids
    which correspond to padding tokens.
165
    """
166
167
    if len(sequence) > block_size:
        return sequence[:block_size]
168
    else:
169
        return sequence.extend([-1] * [block_size - len(sequence)])
170
171


172
def load_and_cache_examples(args, tokenizer):
Rémi Louf's avatar
Rémi Louf committed
173
    dataset = TextDataset(tokenizer, file_path=args.data_dir)
174
    return dataset
Rémi Louf's avatar
Rémi Louf committed
175
176


177
178
179
180
181
# ------------
# Train
# ------------


182
183
def train(args, train_dataset, model, tokenizer):
    """ Fine-tune the pretrained model on the corpus. """
Rémi Louf's avatar
Rémi Louf committed
184
185
186
187
    raise NotImplementedError


def main():
188
189
190
    parser = argparse.ArgumentParser()

    # Required parameters
191
192
193
194
195
196
197
198
199
200
201
202
203
204
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help="The input training data file (a text file).",
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )
205
206

    # Optional parameters
207
208
209
210
211
212
    parser.add_argument(
        "--model_name_or_path",
        default="bert-base-cased",
        type=str,
        help="The model checkpoint for weights initialization.",
    )
213
214
215
216
    parser.add_argument("--seed", default=42, type=int)
    args = parser.parse_args()

    # Set up training device
217
    # device = torch.device("cpu")
218
219
220
221
222

    # Set seed
    set_seed(args)

    # Load pretrained model and tokenizer
223
224
    tokenizer_class = BertTokenizer
    # config = config_class.from_pretrained(args.model_name_or_path)
225
    tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)
226
227
    # model = model_class.from_pretrained(args.model_name_or_path, config=config)
    # model.to(device)
228
229
230
231

    logger.info("Training/evaluation parameters %s", args)

    # Training
232
233
234
    _ = load_and_cache_examples(args, tokenizer)
    # global_step, tr_loss = train(args, train_dataset, model, tokenizer)
    # logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
Rémi Louf's avatar
Rémi Louf committed
235
236


237
if __name__ == "__main__":
238
    main()