run_seq2seq_finetuning.py 8.88 KB
Newer Older
Rémi Louf's avatar
Rémi Louf committed
1
# coding=utf-8
2
# Copyright 2018 The Microsoft Reseach team and The HuggingFace Inc. team.
Rémi Louf's avatar
Rémi Louf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright (c) 2018 Microsoft and The HuggingFace Inc.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning seq2seq models for sequence generation.

We use the procedure described in [1] to finetune models for sequence
generation. Let S1 and S2 be the source and target sequence respectively; we
20
pack them using the start of sequence [EOS] and end of sequence [EOS] token:
Rémi Louf's avatar
Rémi Louf committed
21

22
    [CLS] S1 [EOS] S2 [EOS]
Rémi Louf's avatar
Rémi Louf committed
23
24
25
26
27
28
29
30
31
32

We then mask a fixed percentage of token from S2 at random and learn to predict
the masked words. [EOS] can be masked during finetuning so the model learns to
terminate the generation process.

[1] Dong Li, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng
Gao, Ming Zhou, and Hsiao-Wuen Hon.  “Unified Language Model Pre-Training for
Natural Language Understanding and Generation.” (May 2019) ArXiv:1905.03197
"""

33
import argparse
Rémi Louf's avatar
Rémi Louf committed
34
from collections import deque
Rémi Louf's avatar
Rémi Louf committed
35
import logging
36
import pickle
Rémi Louf's avatar
Rémi Louf committed
37
import random
38
import os
Rémi Louf's avatar
Rémi Louf committed
39
40
41

import numpy as np
import torch
42
from torch.utils.data import Dataset
Rémi Louf's avatar
Rémi Louf committed
43

44
from transformers import BertTokenizer
45

Rémi Louf's avatar
Rémi Louf committed
46
47
48
49
50
51
52
53
54
logger = logging.getLogger(__name__)


def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)


55
class TextDataset(Dataset):
56
    """ Abstracts the dataset used to train seq2seq models.
57
58
59

    CNN/Daily News:

60
61
62
63
    The CNN/Daily News raw datasets are downloaded from [1]. The stories are
    stored in different files; the summary appears at the end of the story as
    sentences that are prefixed by the special `@highlight` line. To process
    the data, untar both datasets in the same folder, and pass the path to this
64
    folder as the "data_dir argument. The formatting code was inspired by [2].
65

66
67
    [1] https://cs.nyu.edu/~kcho/
    [2] https://github.com/abisee/cnn-dailymail/
68
    """
69
70

    def __init_(self, tokenizer, data_dir="", block_size=512):
71
        assert os.path.isdir(data_dir)
72

73
        # Load features that have already been computed if present
74
75
76
        cached_features_file = os.path.join(
            data_dir, "cached_lm_{}_{}".format(block_size, data_dir)
        )
77
78
79
80
        if os.path.exists(cached_features_file):
            logger.info("Loading features from cached file %s", cached_features_file)
            with open(cached_features_file, "rb") as source:
                self.examples = pickle.load(source)
81
82
                return

83
        logger.info("Creating features from dataset at %s", data_dir)
84

85
        datasets = ["cnn", "dailymail"]
86
87
88
89
90
91
92
        for dataset in datasets:
            path_to_stories = os.path.join(data_dir, dataset, "stories")
            assert os.path.isdir(path_to_stories)

            stories_files = os.listdir(path_to_stories)
            for story_file in stories_files:
                path_to_story = os.path.join(path_to_stories, "story_file")
Rémi Louf's avatar
Rémi Louf committed
93
                if not os.path.isfile(path_to_story):
94
95
96
97
                    continue

                with open(path_to_story, encoding="utf-8") as source:
                    try:
Rémi Louf's avatar
Rémi Louf committed
98
99
                        raw_story = source.read()
                        story, summary = process_story(raw_story)
100
101
102
                    except IndexError:
                        continue

103
104
                story = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(story))
                summary = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(summary))
Rémi Louf's avatar
Rémi Louf committed
105
                story_seq, summary_seq = _fit_to_block_size(story, summary, block_size)
106
107
108
                example = tokenizer.add_special_token_sequence_pair(
                    story_seq, summary_seq
                )
109
110
111
112
113
                self.examples.append(example)

        logger.info("Saving features into cache file %s", cached_features_file)
        with open(cached_features_file, "wb") as sink:
            pickle.dump(self.examples, sink, protocole=pickle.HIGHEST_PROTOCOL)
114
115
116
117

    def __len__(self):
        return len(self.examples)

Rémi Louf's avatar
Rémi Louf committed
118
    def __getitem__(self, items):
119
120
121
        return torch.tensor(self.examples[items])


Rémi Louf's avatar
Rémi Louf committed
122
def process_story(raw_story):
123
124
125
    """ Process the text contained in a story file.
    Returns the story and the summary
    """
126
127
128
    file_lines = list(
        filter(lambda x: len(x) != 0, [line.strip() for line in raw_story.split("\n")])
    )
129
130
131
132
133
134

    # for some unknown reason some lines miss a period, add it
    file_lines = [_add_missing_period(line) for line in file_lines]

    # gather article lines
    story_lines = []
Rémi Louf's avatar
Rémi Louf committed
135
    lines = deque(file_lines)
136
137
138
139
140
141
142
143
144
145
    while True:
        try:
            element = lines.popleft()
            if element.startswith("@highlight"):
                break
            story_lines.append(element)
        except IndexError as ie:  # if "@highlight" absent from file
            raise ie

    # gather summary lines
Rémi Louf's avatar
Rémi Louf committed
146
    highlights_lines = list(filter(lambda t: not t.startswith("@highlight"), lines))
147
148
149
150
151
152
153
154
155

    # join the lines
    story = " ".join(story_lines)
    summary = " ".join(highlights_lines)

    return story, summary


def _add_missing_period(line):
156
    END_TOKENS = [".", "!", "?", "...", "'", "`", '"', u"\u2019", u"\u2019", ")"]
Rémi Louf's avatar
Rémi Louf committed
157
    if line.startswith("@highlight"):
158
159
160
161
162
163
        return line
    if line[-1] in END_TOKENS:
        return line
    return line + " ."


164
def _fit_to_block_size(src_sequence, tgt_sequence, block_size):
165
    """ Adapt the source and target sequences' lengths to the block size.
166

167
168
169
170
    If the concatenated sequence (source + target + 3 special tokens) would be
    longer than the block size we use the 75% / 25% rule followed in [1]. For a
    block size of 512 this means limiting the source sequence's length to 384
    and the target sequence's length to 128.
171
172
173
174

    [1] Dong, Li, et al. "Unified Language Model Pre-training for Natural
    Language Understanding and Generation." arXiv preprint arXiv:1905.03197 (2019).
    """
Rémi Louf's avatar
Rémi Louf committed
175
    SRC_MAX_LENGTH = int(0.75 * block_size) - 2  # CLS and EOS token
176
    TGT_MAX_LENGTH = block_size - (SRC_MAX_LENGTH + 2) - 1  # EOS token
177

178
    # We dump the examples that are too small to fit in the block size for the
179
    # sake of simplicity. You can modify this by adding model-specific padding.
180
    if len(src_sequence) + len(tgt_sequence) + 3 < block_size:
181
182
        return None

Rémi Louf's avatar
Rémi Louf committed
183
    if len(src_sequence) > SRC_MAX_LENGTH:
184
185
186
        if len(tgt_sequence) > TGT_MAX_LENGTH:
            src_sequence = src_sequence[:SRC_MAX_LENGTH]
            tgt_sequence = tgt_sequence[:TGT_MAX_LENGTH]
187
        else:
188
189
            remain_size = block_size - len(tgt_sequence) - 3
            src_sequence = src_sequence[:remain_size]
190
    else:
Rémi Louf's avatar
Rémi Louf committed
191
        if len(tgt_sequence) > TGT_MAX_LENGTH:
192
193
            remain_size = block_size - len(src_sequence) - 3
            tgt_sequence = tgt_sequence[:remain_size]
194

195
    return src_sequence, tgt_sequence
196
197


198
def load_and_cache_examples(args, tokenizer):
Rémi Louf's avatar
Rémi Louf committed
199
    dataset = TextDataset(tokenizer, file_path=args.data_dir)
200
    return dataset
Rémi Louf's avatar
Rémi Louf committed
201
202


203
204
def train(args, train_dataset, model, tokenizer):
    """ Fine-tune the pretrained model on the corpus. """
Rémi Louf's avatar
Rémi Louf committed
205
206
207
208
    raise NotImplementedError


def main():
209
210
211
    parser = argparse.ArgumentParser()

    # Required parameters
212
213
214
215
216
217
218
219
220
221
222
223
224
225
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help="The input training data file (a text file).",
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )
226
227

    # Optional parameters
228
229
230
231
232
233
    parser.add_argument(
        "--model_name_or_path",
        default="bert-base-cased",
        type=str,
        help="The model checkpoint for weights initialization.",
    )
234
235
236
237
    parser.add_argument("--seed", default=42, type=int)
    args = parser.parse_args()

    # Set up training device
238
    # device = torch.device("cpu")
239
240
241
242
243

    # Set seed
    set_seed(args)

    # Load pretrained model and tokenizer
244
245
    tokenizer_class = BertTokenizer
    # config = config_class.from_pretrained(args.model_name_or_path)
246
    tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)
247
248
    # model = model_class.from_pretrained(args.model_name_or_path, config=config)
    # model.to(device)
249
250
251
252

    logger.info("Training/evaluation parameters %s", args)

    # Training
253
254
255
    _ = load_and_cache_examples(args, tokenizer)
    # global_step, tr_loss = train(args, train_dataset, model, tokenizer)
    # logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
Rémi Louf's avatar
Rémi Louf committed
256
257


258
if __name__ == "__main__":
259
    main()