run_seq2seq_finetuning.py 8.07 KB
Newer Older
Rémi Louf's avatar
Rémi Louf committed
1
# coding=utf-8
2
# Copyright 2018 The Microsoft Reseach team and The HuggingFace Inc. team.
Rémi Louf's avatar
Rémi Louf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright (c) 2018 Microsoft and The HuggingFace Inc.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning seq2seq models for sequence generation.

We use the procedure described in [1] to finetune models for sequence
generation. Let S1 and S2 be the source and target sequence respectively; we
20
pack them using the start of sequence [EOS] and end of sequence [EOS] token:
Rémi Louf's avatar
Rémi Louf committed
21

22
    [CLS] S1 [EOS] S2 [EOS]
Rémi Louf's avatar
Rémi Louf committed
23
24
25
26
27
28
29
30
31
32

We then mask a fixed percentage of token from S2 at random and learn to predict
the masked words. [EOS] can be masked during finetuning so the model learns to
terminate the generation process.

[1] Dong Li, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng
Gao, Ming Zhou, and Hsiao-Wuen Hon.  “Unified Language Model Pre-Training for
Natural Language Understanding and Generation.” (May 2019) ArXiv:1905.03197
"""

33
import argparse
Rémi Louf's avatar
Rémi Louf committed
34
from collections import deque
Rémi Louf's avatar
Rémi Louf committed
35
import logging
36
import pickle
Rémi Louf's avatar
Rémi Louf committed
37
import random
38
import os
Rémi Louf's avatar
Rémi Louf committed
39
40
41

import numpy as np
import torch
42
from torch.utils.data import Dataset
Rémi Louf's avatar
Rémi Louf committed
43

44
from transformers import BertTokenizer
45

Rémi Louf's avatar
Rémi Louf committed
46
47
48
49
50
51
52
53
54
logger = logging.getLogger(__name__)


def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)


55
56
57
58
# ------------
# Load dataset
# ------------

59
class TextDataset(Dataset):
60
    """ Abstracts the dataset used to train seq2seq models.
61
62
63

    CNN/Daily News:

64
65
66
67
    The CNN/Daily News raw datasets are downloaded from [1]. The stories are
    stored in different files; the summary appears at the end of the story as
    sentences that are prefixed by the special `@highlight` line. To process
    the data, untar both datasets in the same folder, and pass the path to this
68
    folder as the "data_dir argument. The formatting code was inspired by [2].
69

70
71
    [1] https://cs.nyu.edu/~kcho/
    [2] https://github.com/abisee/cnn-dailymail/
72
    """
73
74

    def __init_(self, tokenizer, data_dir="", block_size=512):
75
        assert os.path.isdir(data_dir)
76

77
        # Load features that have already been computed if present
78
79
80
        cached_features_file = os.path.join(
            data_dir, "cached_lm_{}_{}".format(block_size, data_dir)
        )
81
82
83
84
        if os.path.exists(cached_features_file):
            logger.info("Loading features from cached file %s", cached_features_file)
            with open(cached_features_file, "rb") as source:
                self.examples = pickle.load(source)
85
86
                return

87
        logger.info("Creating features from dataset at %s", data_dir)
88

89
        datasets = ["cnn", "dailymail"]
90
91
92
93
        for dataset in datasets:
            path_to_stories = os.path.join(data_dir, dataset, "stories")
            assert os.path.isdir(path_to_stories)

Rémi Louf's avatar
Rémi Louf committed
94
95
96
            story_filenames_list = os.listdir(path_to_stories)
            for story_filename in story_filenames_list:
                path_to_story = os.path.join(path_to_stories, story_filename)
Rémi Louf's avatar
Rémi Louf committed
97
                if not os.path.isfile(path_to_story):
98
99
100
101
                    continue

                with open(path_to_story, encoding="utf-8") as source:
                    try:
Rémi Louf's avatar
Rémi Louf committed
102
103
                        raw_story = source.read()
                        story, summary = process_story(raw_story)
Rémi Louf's avatar
Rémi Louf committed
104
                    except IndexError:  # skip ill-formed stories
105
106
                        continue

107
                summary = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(summary))
108
109
110
111
                summary_seq = _fit_to_block_size(summary, block_size)

                story = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(story))
                story_seq = _fit_to_block_size(story, block_size)
Rémi Louf's avatar
Rémi Louf committed
112
113
114

                self.examples.append(
                    tokenizer.add_special_token_sequence_pair(story_seq, summary_seq)
115
                )
116
117
118
119

        logger.info("Saving features into cache file %s", cached_features_file)
        with open(cached_features_file, "wb") as sink:
            pickle.dump(self.examples, sink, protocole=pickle.HIGHEST_PROTOCOL)
120
121
122
123

    def __len__(self):
        return len(self.examples)

Rémi Louf's avatar
Rémi Louf committed
124
    def __getitem__(self, items):
125
126
127
        return torch.tensor(self.examples[items])


Rémi Louf's avatar
Rémi Louf committed
128
def process_story(raw_story):
Rémi Louf's avatar
Rémi Louf committed
129
130
131
132
133
134
135
    """ Extract the story and summary from a story file.

    Attributes:
        raw_story (str): content of the story file as an utf-8 encoded string.

    Raises:
        IndexError: If the stoy is empty or contains no highlights.
136
    """
137
138
139
    file_lines = list(
        filter(lambda x: len(x) != 0, [line.strip() for line in raw_story.split("\n")])
    )
140
141
142
143
144
145

    # for some unknown reason some lines miss a period, add it
    file_lines = [_add_missing_period(line) for line in file_lines]

    # gather article lines
    story_lines = []
Rémi Louf's avatar
Rémi Louf committed
146
    lines = deque(file_lines)
147
148
149
150
151
152
153
154
155
156
    while True:
        try:
            element = lines.popleft()
            if element.startswith("@highlight"):
                break
            story_lines.append(element)
        except IndexError as ie:  # if "@highlight" absent from file
            raise ie

    # gather summary lines
Rémi Louf's avatar
Rémi Louf committed
157
    highlights_lines = list(filter(lambda t: not t.startswith("@highlight"), lines))
158
159
160
161
162
163
164
165
166

    # join the lines
    story = " ".join(story_lines)
    summary = " ".join(highlights_lines)

    return story, summary


def _add_missing_period(line):
167
    END_TOKENS = [".", "!", "?", "...", "'", "`", '"', u"\u2019", u"\u2019", ")"]
Rémi Louf's avatar
Rémi Louf committed
168
    if line.startswith("@highlight"):
169
170
171
        return line
    if line[-1] in END_TOKENS:
        return line
Rémi Louf's avatar
Rémi Louf committed
172
    return line + "."
173
174


175
def _fit_to_block_size(sequence, block_size):
176
    """ Adapt the source and target sequences' lengths to the block size.
177
178
    If the sequence is shorter than the block size we pad it with -1 ids
    which correspond to padding tokens.
179
    """
180
181
    if len(sequence) > block_size:
        return sequence[:block_size]
182
    else:
183
        return sequence.extend([-1] * [block_size - len(sequence)])
184
185


186
def load_and_cache_examples(args, tokenizer):
Rémi Louf's avatar
Rémi Louf committed
187
    dataset = TextDataset(tokenizer, file_path=args.data_dir)
188
    return dataset
Rémi Louf's avatar
Rémi Louf committed
189
190


191
192
193
194
195
# ------------
# Train
# ------------


196
197
def train(args, train_dataset, model, tokenizer):
    """ Fine-tune the pretrained model on the corpus. """
Rémi Louf's avatar
Rémi Louf committed
198
199
200
201
    raise NotImplementedError


def main():
202
203
204
    parser = argparse.ArgumentParser()

    # Required parameters
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help="The input training data file (a text file).",
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )
219
220

    # Optional parameters
221
222
223
224
225
226
    parser.add_argument(
        "--model_name_or_path",
        default="bert-base-cased",
        type=str,
        help="The model checkpoint for weights initialization.",
    )
227
228
229
230
    parser.add_argument("--seed", default=42, type=int)
    args = parser.parse_args()

    # Set up training device
231
    # device = torch.device("cpu")
232
233
234
235
236

    # Set seed
    set_seed(args)

    # Load pretrained model and tokenizer
237
238
    tokenizer_class = BertTokenizer
    # config = config_class.from_pretrained(args.model_name_or_path)
239
    tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)
240
241
    # model = model_class.from_pretrained(args.model_name_or_path, config=config)
    # model.to(device)
242
243
244
245

    logger.info("Training/evaluation parameters %s", args)

    # Training
246
247
248
    _ = load_and_cache_examples(args, tokenizer)
    # global_step, tr_loss = train(args, train_dataset, model, tokenizer)
    # logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
Rémi Louf's avatar
Rémi Louf committed
249
250


251
if __name__ == "__main__":
252
    main()