run_image_classification.py 17.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional

22
import evaluate
23
24
25
26
27
28
29
import numpy as np
import torch
from datasets import load_dataset
from PIL import Image
from torchvision.transforms import (
    CenterCrop,
    Compose,
30
    Lambda,
31
32
33
34
35
36
37
38
39
40
41
    Normalize,
    RandomHorizontalFlip,
    RandomResizedCrop,
    Resize,
    ToTensor,
)

import transformers
from transformers import (
    MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
    AutoConfig,
42
    AutoImageProcessor,
43
44
45
46
    AutoModelForImageClassification,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
47
    set_seed,
48
49
)
from transformers.trainer_utils import get_last_checkpoint
50
from transformers.utils import check_min_version, send_example_telemetry
51
52
53
54
55
56
57
58
from transformers.utils.versions import require_version


""" Fine-tuning a 🤗 Transformers model for image classification"""

logger = logging.getLogger(__name__)

# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Arthur Zucker's avatar
Arthur Zucker committed
59
check_min_version("4.42.0.dev0")
60

61
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt")
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

MODEL_CONFIG_CLASSES = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


def pil_loader(path: str):
    with open(path, "rb") as f:
        im = Image.open(f)
        return im.convert("RGB")


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
77
78
    Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify
    them on the command line.
79
80
81
    """

    dataset_name: Optional[str] = field(
82
83
84
85
        default=None,
        metadata={
            "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)."
        },
86
87
88
89
90
91
92
93
94
95
96
97
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the training data."})
    validation_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the validation data."})
    train_val_split: Optional[float] = field(
        default=0.15, metadata={"help": "Percent to split off of train for validation."}
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
98
99
100
101
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
102
103
104
105
106
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
107
108
109
110
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
111
112
        },
    )
113
114
115
116
117
118
119
120
    image_column_name: str = field(
        default="image",
        metadata={"help": "The name of the dataset column containing the image data. Defaults to 'image'."},
    )
    label_column_name: str = field(
        default="label",
        metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'."},
    )
121
122

    def __post_init__(self):
123
124
125
126
        if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None):
            raise ValueError(
                "You must specify either a dataset name from the hub or a train and/or validation directory."
            )
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        default="google/vit-base-patch16-224-in21k",
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
153
    image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."})
154
155
    token: str = field(
        default=None,
156
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
157
            "help": (
158
159
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
160
            )
161
162
        },
    )
163
164
165
166
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
167
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
168
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
169
170
171
172
                "execute code present on the Hub on your local machine."
            )
        },
    )
173
174
175
176
    ignore_mismatched_sizes: bool = field(
        default=False,
        metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
    )
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

192
193
194
195
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_image_classification", model_args, data_args)

196
197
198
199
200
201
202
    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

203
204
205
206
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

207
208
209
210
211
212
213
214
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
215
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
216
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

235
236
237
    # Set seed before initializing model.
    set_seed(training_args.seed)

238
    # Initialize our dataset and prepare it for the 'image-classification' task.
239
240
241
242
243
    if data_args.dataset_name is not None:
        dataset = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
244
            token=model_args.token,
245
246
247
248
249
250
251
252
253
254
255
256
        )
    else:
        data_files = {}
        if data_args.train_dir is not None:
            data_files["train"] = os.path.join(data_args.train_dir, "**")
        if data_args.validation_dir is not None:
            data_files["validation"] = os.path.join(data_args.validation_dir, "**")
        dataset = load_dataset(
            "imagefolder",
            data_files=data_files,
            cache_dir=model_args.cache_dir,
        )
257

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    dataset_column_names = dataset["train"].column_names if "train" in dataset else dataset["validation"].column_names
    if data_args.image_column_name not in dataset_column_names:
        raise ValueError(
            f"--image_column_name {data_args.image_column_name} not found in dataset '{data_args.dataset_name}'. "
            "Make sure to set `--image_column_name` to the correct audio column - one of "
            f"{', '.join(dataset_column_names)}."
        )
    if data_args.label_column_name not in dataset_column_names:
        raise ValueError(
            f"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. "
            "Make sure to set `--label_column_name` to the correct text column - one of "
            f"{', '.join(dataset_column_names)}."
        )

    def collate_fn(examples):
        pixel_values = torch.stack([example["pixel_values"] for example in examples])
        labels = torch.tensor([example[data_args.label_column_name] for example in examples])
        return {"pixel_values": pixel_values, "labels": labels}

277
    # If we don't have a validation split, split off a percentage of train as validation.
278
    data_args.train_val_split = None if "validation" in dataset.keys() else data_args.train_val_split
279
    if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0:
280
281
282
        split = dataset["train"].train_test_split(data_args.train_val_split)
        dataset["train"] = split["train"]
        dataset["validation"] = split["test"]
283
284
285

    # Prepare label mappings.
    # We'll include these in the model's config to get human readable labels in the Inference API.
286
    labels = dataset["train"].features[data_args.label_column_name].names
287
    label2id, id2label = {}, {}
288
289
290
291
292
    for i, label in enumerate(labels):
        label2id[label] = str(i)
        id2label[str(i)] = label

    # Load the accuracy metric from the datasets package
293
    metric = evaluate.load("accuracy", cache_dir=model_args.cache_dir)
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

    # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    def compute_metrics(p):
        """Computes accuracy on a batch of predictions"""
        return metric.compute(predictions=np.argmax(p.predictions, axis=1), references=p.label_ids)

    config = AutoConfig.from_pretrained(
        model_args.config_name or model_args.model_name_or_path,
        num_labels=len(labels),
        label2id=label2id,
        id2label=id2label,
        finetuning_task="image-classification",
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
309
        token=model_args.token,
310
        trust_remote_code=model_args.trust_remote_code,
311
312
313
314
315
316
317
    )
    model = AutoModelForImageClassification.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
318
        token=model_args.token,
319
        trust_remote_code=model_args.trust_remote_code,
320
        ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
321
    )
322
323
    image_processor = AutoImageProcessor.from_pretrained(
        model_args.image_processor_name or model_args.model_name_or_path,
324
325
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
326
        token=model_args.token,
327
        trust_remote_code=model_args.trust_remote_code,
328
329
    )

330
    # Define torchvision transforms to be applied to each image.
331
332
    if "shortest_edge" in image_processor.size:
        size = image_processor.size["shortest_edge"]
amyeroberts's avatar
amyeroberts committed
333
    else:
334
        size = (image_processor.size["height"], image_processor.size["width"])
335
336
337
338
339
    normalize = (
        Normalize(mean=image_processor.image_mean, std=image_processor.image_std)
        if hasattr(image_processor, "image_mean") and hasattr(image_processor, "image_std")
        else Lambda(lambda x: x)
    )
340
341
    _train_transforms = Compose(
        [
amyeroberts's avatar
amyeroberts committed
342
            RandomResizedCrop(size),
343
344
345
346
347
348
349
            RandomHorizontalFlip(),
            ToTensor(),
            normalize,
        ]
    )
    _val_transforms = Compose(
        [
amyeroberts's avatar
amyeroberts committed
350
351
            Resize(size),
            CenterCrop(size),
352
353
354
355
356
357
358
            ToTensor(),
            normalize,
        ]
    )

    def train_transforms(example_batch):
        """Apply _train_transforms across a batch."""
359
        example_batch["pixel_values"] = [
360
            _train_transforms(pil_img.convert("RGB")) for pil_img in example_batch[data_args.image_column_name]
361
        ]
362
363
364
365
        return example_batch

    def val_transforms(example_batch):
        """Apply _val_transforms across a batch."""
366
367
368
        example_batch["pixel_values"] = [
            _val_transforms(pil_img.convert("RGB")) for pil_img in example_batch[data_args.image_column_name]
        ]
369
370
        return example_batch

371
    if training_args.do_train:
372
        if "train" not in dataset:
373
374
            raise ValueError("--do_train requires a train dataset")
        if data_args.max_train_samples is not None:
375
376
377
            dataset["train"] = (
                dataset["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples))
            )
378
        # Set the training transforms
379
        dataset["train"].set_transform(train_transforms)
380
381

    if training_args.do_eval:
382
        if "validation" not in dataset:
383
384
            raise ValueError("--do_eval requires a validation dataset")
        if data_args.max_eval_samples is not None:
385
386
            dataset["validation"] = (
                dataset["validation"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
387
388
            )
        # Set the validation transforms
389
        dataset["validation"].set_transform(val_transforms)
390

391
    # Initialize our trainer
392
393
394
    trainer = Trainer(
        model=model,
        args=training_args,
395
396
        train_dataset=dataset["train"] if training_args.do_train else None,
        eval_dataset=dataset["validation"] if training_args.do_eval else None,
397
        compute_metrics=compute_metrics,
NielsRogge's avatar
NielsRogge committed
398
        tokenizer=image_processor,
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
        data_collator=collate_fn,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()
        trainer.log_metrics("train", train_result.metrics)
        trainer.save_metrics("train", train_result.metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        metrics = trainer.evaluate()
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Write model card and (optionally) push to hub
    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "tasks": "image-classification",
        "dataset": data_args.dataset_name,
426
        "tags": ["image-classification", "vision"],
427
428
429
430
431
432
433
434
435
    }
    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)


if __name__ == "__main__":
    main()