Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
e9c23fa0
Unverified
Commit
e9c23fa0
authored
Apr 09, 2024
by
NielsRogge
Committed by
GitHub
Apr 09, 2024
Browse files
[Trainer] Undo #29896 (#30129)
* Undo * Use tokenizer * Undo data collator
parent
ba1b24e0
Changes
20
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
24 additions
and
41 deletions
+24
-41
docs/source/en/tasks/image_classification.md
docs/source/en/tasks/image_classification.md
+2
-2
docs/source/en/tasks/object_detection.md
docs/source/en/tasks/object_detection.md
+1
-1
docs/source/en/tasks/semantic_segmentation.md
docs/source/en/tasks/semantic_segmentation.md
+1
-1
docs/source/en/tasks/video_classification.md
docs/source/en/tasks/video_classification.md
+1
-1
docs/source/es/tasks/image_classification.md
docs/source/es/tasks/image_classification.md
+1
-1
docs/source/ja/tasks/image_classification.md
docs/source/ja/tasks/image_classification.md
+2
-2
docs/source/ja/tasks/object_detection.md
docs/source/ja/tasks/object_detection.md
+1
-1
docs/source/ja/tasks/semantic_segmentation.md
docs/source/ja/tasks/semantic_segmentation.md
+1
-1
docs/source/ja/tasks/video_classification.md
docs/source/ja/tasks/video_classification.md
+1
-1
docs/source/ko/tasks/image_classification.md
docs/source/ko/tasks/image_classification.md
+2
-2
docs/source/ko/tasks/object_detection.md
docs/source/ko/tasks/object_detection.md
+1
-1
docs/source/ko/tasks/semantic_segmentation.md
docs/source/ko/tasks/semantic_segmentation.md
+1
-1
docs/source/ko/tasks/video_classification.md
docs/source/ko/tasks/video_classification.md
+1
-1
examples/pytorch/image-classification/run_image_classification.py
.../pytorch/image-classification/run_image_classification.py
+1
-1
examples/pytorch/image-pretraining/run_mae.py
examples/pytorch/image-pretraining/run_mae.py
+1
-1
examples/pytorch/image-pretraining/run_mim.py
examples/pytorch/image-pretraining/run_mim.py
+1
-1
examples/pytorch/semantic-segmentation/run_semantic_segmentation.py
...ytorch/semantic-segmentation/run_semantic_segmentation.py
+1
-1
examples/tensorflow/image-classification/run_image_classification.py
...nsorflow/image-classification/run_image_classification.py
+1
-1
src/transformers/trainer.py
src/transformers/trainer.py
+2
-15
src/transformers/trainer_callback.py
src/transformers/trainer_callback.py
+1
-5
No files found.
docs/source/en/tasks/image_classification.md
View file @
e9c23fa0
...
@@ -322,7 +322,7 @@ At this point, only three steps remain:
...
@@ -322,7 +322,7 @@ At this point, only three steps remain:
...
data_collator
=
data_collator
,
...
data_collator
=
data_collator
,
...
train_dataset
=
food
[
"train"
],
...
train_dataset
=
food
[
"train"
],
...
eval_dataset
=
food
[
"test"
],
...
eval_dataset
=
food
[
"test"
],
...
image_processo
r
=
image_processor
,
...
tokenize
r
=
image_processor
,
...
compute_metrics
=
compute_metrics
,
...
compute_metrics
=
compute_metrics
,
...
)
...
)
...
@@ -418,7 +418,7 @@ and use the [PushToHubCallback](../main_classes/keras_callbacks#transformers.Pus
...
@@ -418,7 +418,7 @@ and use the [PushToHubCallback](../main_classes/keras_callbacks#transformers.Pus
>>>
metric_callback
=
KerasMetricCallback
(
metric_fn
=
compute_metrics
,
eval_dataset
=
tf_eval_dataset
)
>>>
metric_callback
=
KerasMetricCallback
(
metric_fn
=
compute_metrics
,
eval_dataset
=
tf_eval_dataset
)
>>>
push_to_hub_callback
=
PushToHubCallback
(
>>>
push_to_hub_callback
=
PushToHubCallback
(
...
output_dir
=
"food_classifier"
,
...
output_dir
=
"food_classifier"
,
...
image_processo
r
=
image_processor
,
...
tokenize
r
=
image_processor
,
...
save_strategy
=
"no"
,
...
save_strategy
=
"no"
,
...
)
...
)
>>>
callbacks
=
[
metric_callback
,
push_to_hub_callback
]
>>>
callbacks
=
[
metric_callback
,
push_to_hub_callback
]
...
...
docs/source/en/tasks/object_detection.md
View file @
e9c23fa0
...
@@ -384,7 +384,7 @@ Finally, bring everything together, and call [`~transformers.Trainer.train`]:
...
@@ -384,7 +384,7 @@ Finally, bring everything together, and call [`~transformers.Trainer.train`]:
...
args
=
training_args
,
...
args
=
training_args
,
...
data_collator
=
collate_fn
,
...
data_collator
=
collate_fn
,
...
train_dataset
=
cppe5
[
"train"
],
...
train_dataset
=
cppe5
[
"train"
],
...
image_processo
r
=
image_processor
,
...
tokenize
r
=
image_processor
,
...
)
...
)
>>>
trainer
.
train
()
>>>
trainer
.
train
()
...
...
docs/source/en/tasks/semantic_segmentation.md
View file @
e9c23fa0
...
@@ -642,7 +642,7 @@ and use the [`PushToHubCallback`] to upload the model:
...
@@ -642,7 +642,7 @@ and use the [`PushToHubCallback`] to upload the model:
...
metric_fn
=
compute_metrics
,
eval_dataset
=
tf_eval_dataset
,
batch_size
=
batch_size
,
label_cols
=
[
"labels"
]
...
metric_fn
=
compute_metrics
,
eval_dataset
=
tf_eval_dataset
,
batch_size
=
batch_size
,
label_cols
=
[
"labels"
]
...
)
...
)
>>>
push_to_hub_callback
=
PushToHubCallback
(
output_dir
=
"scene_segmentation"
,
image_processo
r
=
image_processor
)
>>>
push_to_hub_callback
=
PushToHubCallback
(
output_dir
=
"scene_segmentation"
,
tokenize
r
=
image_processor
)
>>>
callbacks
=
[
metric_callback
,
push_to_hub_callback
]
>>>
callbacks
=
[
metric_callback
,
push_to_hub_callback
]
```
```
...
...
docs/source/en/tasks/video_classification.md
View file @
e9c23fa0
...
@@ -407,7 +407,7 @@ Then you just pass all of this along with the datasets to `Trainer`:
...
@@ -407,7 +407,7 @@ Then you just pass all of this along with the datasets to `Trainer`:
...
args
,
...
args
,
...
train_dataset
=
train_dataset
,
...
train_dataset
=
train_dataset
,
...
eval_dataset
=
val_dataset
,
...
eval_dataset
=
val_dataset
,
...
image_processo
r
=
image_processor
,
...
tokenize
r
=
image_processor
,
...
compute_metrics
=
compute_metrics
,
...
compute_metrics
=
compute_metrics
,
...
data_collator
=
collate_fn
,
...
data_collator
=
collate_fn
,
...
)
...
)
...
...
docs/source/es/tasks/image_classification.md
View file @
e9c23fa0
...
@@ -160,7 +160,7 @@ Al llegar a este punto, solo quedan tres pasos:
...
@@ -160,7 +160,7 @@ Al llegar a este punto, solo quedan tres pasos:
...
data_collator
=
data_collator
,
...
data_collator
=
data_collator
,
...
train_dataset
=
food
[
"train"
],
...
train_dataset
=
food
[
"train"
],
...
eval_dataset
=
food
[
"test"
],
...
eval_dataset
=
food
[
"test"
],
...
image_processo
r
=
image_processor
,
...
tokenize
r
=
image_processor
,
...
)
...
)
>>>
trainer
.
train
()
>>>
trainer
.
train
()
...
...
docs/source/ja/tasks/image_classification.md
View file @
e9c23fa0
...
@@ -328,7 +328,7 @@ food["test"].set_transform(preprocess_val)
...
@@ -328,7 +328,7 @@ food["test"].set_transform(preprocess_val)
...
data_collator
=
data_collator
,
...
data_collator
=
data_collator
,
...
train_dataset
=
food
[
"train"
],
...
train_dataset
=
food
[
"train"
],
...
eval_dataset
=
food
[
"test"
],
...
eval_dataset
=
food
[
"test"
],
...
image_processo
r
=
image_processor
,
...
tokenize
r
=
image_processor
,
...
compute_metrics
=
compute_metrics
,
...
compute_metrics
=
compute_metrics
,
...
)
...
)
...
@@ -426,7 +426,7 @@ Convert your datasets to the `tf.data.Dataset` format using the [`~datasets.Data
...
@@ -426,7 +426,7 @@ Convert your datasets to the `tf.data.Dataset` format using the [`~datasets.Data
>>>
metric_callback
=
KerasMetricCallback
(
metric_fn
=
compute_metrics
,
eval_dataset
=
tf_eval_dataset
)
>>>
metric_callback
=
KerasMetricCallback
(
metric_fn
=
compute_metrics
,
eval_dataset
=
tf_eval_dataset
)
>>>
push_to_hub_callback
=
PushToHubCallback
(
>>>
push_to_hub_callback
=
PushToHubCallback
(
...
output_dir
=
"food_classifier"
,
...
output_dir
=
"food_classifier"
,
...
image_processo
r
=
image_processor
,
...
tokenize
r
=
image_processor
,
...
save_strategy
=
"no"
,
...
save_strategy
=
"no"
,
...
)
...
)
>>>
callbacks
=
[
metric_callback
,
push_to_hub_callback
]
>>>
callbacks
=
[
metric_callback
,
push_to_hub_callback
]
...
...
docs/source/ja/tasks/object_detection.md
View file @
e9c23fa0
...
@@ -376,7 +376,7 @@ DETR モデルをトレーニングできる「ラベル」。画像プロセッ
...
@@ -376,7 +376,7 @@ DETR モデルをトレーニングできる「ラベル」。画像プロセッ
...
args
=
training_args
,
...
args
=
training_args
,
...
data_collator
=
collate_fn
,
...
data_collator
=
collate_fn
,
...
train_dataset
=
cppe5
[
"train"
],
...
train_dataset
=
cppe5
[
"train"
],
...
image_processo
r
=
image_processor
,
...
tokenize
r
=
image_processor
,
...
)
...
)
>>>
trainer
.
train
()
>>>
trainer
.
train
()
...
...
docs/source/ja/tasks/semantic_segmentation.md
View file @
e9c23fa0
...
@@ -434,7 +434,7 @@ TensorFlow でモデルを微調整するには、次の手順に従います。
...
@@ -434,7 +434,7 @@ TensorFlow でモデルを微調整するには、次の手順に従います。
...
metric_fn
=
compute_metrics
,
eval_dataset
=
tf_eval_dataset
,
batch_size
=
batch_size
,
label_cols
=
[
"labels"
]
...
metric_fn
=
compute_metrics
,
eval_dataset
=
tf_eval_dataset
,
batch_size
=
batch_size
,
label_cols
=
[
"labels"
]
...
)
...
)
>>>
push_to_hub_callback
=
PushToHubCallback
(
output_dir
=
"scene_segmentation"
,
image_processo
r
=
image_processor
)
>>>
push_to_hub_callback
=
PushToHubCallback
(
output_dir
=
"scene_segmentation"
,
tokenize
r
=
image_processor
)
>>>
callbacks
=
[
metric_callback
,
push_to_hub_callback
]
>>>
callbacks
=
[
metric_callback
,
push_to_hub_callback
]
```
```
...
...
docs/source/ja/tasks/video_classification.md
View file @
e9c23fa0
...
@@ -414,7 +414,7 @@ def compute_metrics(eval_pred):
...
@@ -414,7 +414,7 @@ def compute_metrics(eval_pred):
... args,
... args,
... train_dataset=train_dataset,
... train_dataset=train_dataset,
... eval_dataset=val_dataset,
... eval_dataset=val_dataset,
...
image_processo
r=image_processor,
...
tokenize
r=image_processor,
... compute_metrics=compute_metrics,
... compute_metrics=compute_metrics,
... data_collator=collate_fn,
... data_collator=collate_fn,
... )
... )
...
...
docs/source/ko/tasks/image_classification.md
View file @
e9c23fa0
...
@@ -321,7 +321,7 @@ food["test"].set_transform(preprocess_val)
...
@@ -321,7 +321,7 @@ food["test"].set_transform(preprocess_val)
...
data_collator
=
data_collator
,
...
data_collator
=
data_collator
,
...
train_dataset
=
food
[
"train"
],
...
train_dataset
=
food
[
"train"
],
...
eval_dataset
=
food
[
"test"
],
...
eval_dataset
=
food
[
"test"
],
...
image_processo
r
=
image_processor
,
...
tokenize
r
=
image_processor
,
...
compute_metrics
=
compute_metrics
,
...
compute_metrics
=
compute_metrics
,
...
)
...
)
...
@@ -417,7 +417,7 @@ TensorFlow에서 모델을 미세 조정하려면 다음 단계를 따르세요:
...
@@ -417,7 +417,7 @@ TensorFlow에서 모델을 미세 조정하려면 다음 단계를 따르세요:
>>>
metric_callback
=
KerasMetricCallback
(
metric_fn
=
compute_metrics
,
eval_dataset
=
tf_eval_dataset
)
>>>
metric_callback
=
KerasMetricCallback
(
metric_fn
=
compute_metrics
,
eval_dataset
=
tf_eval_dataset
)
>>>
push_to_hub_callback
=
PushToHubCallback
(
>>>
push_to_hub_callback
=
PushToHubCallback
(
...
output_dir
=
"food_classifier"
,
...
output_dir
=
"food_classifier"
,
...
image_processo
r
=
image_processor
,
...
tokenize
r
=
image_processor
,
...
save_strategy
=
"no"
,
...
save_strategy
=
"no"
,
...
)
...
)
>>>
callbacks
=
[
metric_callback
,
push_to_hub_callback
]
>>>
callbacks
=
[
metric_callback
,
push_to_hub_callback
]
...
...
docs/source/ko/tasks/object_detection.md
View file @
e9c23fa0
...
@@ -366,7 +366,7 @@ DatasetDict({
...
@@ -366,7 +366,7 @@ DatasetDict({
...
args
=
training_args
,
...
args
=
training_args
,
...
data_collator
=
collate_fn
,
...
data_collator
=
collate_fn
,
...
train_dataset
=
cppe5
[
"train"
],
...
train_dataset
=
cppe5
[
"train"
],
...
image_processo
r
=
image_processor
,
...
tokenize
r
=
image_processor
,
...
)
...
)
>>>
trainer
.
train
()
>>>
trainer
.
train
()
...
...
docs/source/ko/tasks/semantic_segmentation.md
View file @
e9c23fa0
...
@@ -424,7 +424,7 @@ TensorFlow에서 모델을 미세 조정하려면 다음 단계를 따르세요:
...
@@ -424,7 +424,7 @@ TensorFlow에서 모델을 미세 조정하려면 다음 단계를 따르세요:
...
metric_fn
=
compute_metrics
,
eval_dataset
=
tf_eval_dataset
,
batch_size
=
batch_size
,
label_cols
=
[
"labels"
]
...
metric_fn
=
compute_metrics
,
eval_dataset
=
tf_eval_dataset
,
batch_size
=
batch_size
,
label_cols
=
[
"labels"
]
...
)
...
)
>>>
push_to_hub_callback
=
PushToHubCallback
(
output_dir
=
"scene_segmentation"
,
image_processo
r
=
image_processor
)
>>>
push_to_hub_callback
=
PushToHubCallback
(
output_dir
=
"scene_segmentation"
,
tokenize
r
=
image_processor
)
>>>
callbacks
=
[
metric_callback
,
push_to_hub_callback
]
>>>
callbacks
=
[
metric_callback
,
push_to_hub_callback
]
```
```
...
...
docs/source/ko/tasks/video_classification.md
View file @
e9c23fa0
...
@@ -411,7 +411,7 @@ def compute_metrics(eval_pred):
...
@@ -411,7 +411,7 @@ def compute_metrics(eval_pred):
...
args
,
...
args
,
...
train_dataset
=
train_dataset
,
...
train_dataset
=
train_dataset
,
...
eval_dataset
=
val_dataset
,
...
eval_dataset
=
val_dataset
,
...
image_processo
r
=
image_processor
,
...
tokenize
r
=
image_processor
,
...
compute_metrics
=
compute_metrics
,
...
compute_metrics
=
compute_metrics
,
...
data_collator
=
collate_fn
,
...
data_collator
=
collate_fn
,
...
)
...
)
...
...
examples/pytorch/image-classification/run_image_classification.py
View file @
e9c23fa0
...
@@ -411,7 +411,7 @@ def main():
...
@@ -411,7 +411,7 @@ def main():
train_dataset
=
dataset
[
"train"
]
if
training_args
.
do_train
else
None
,
train_dataset
=
dataset
[
"train"
]
if
training_args
.
do_train
else
None
,
eval_dataset
=
dataset
[
"validation"
]
if
training_args
.
do_eval
else
None
,
eval_dataset
=
dataset
[
"validation"
]
if
training_args
.
do_eval
else
None
,
compute_metrics
=
compute_metrics
,
compute_metrics
=
compute_metrics
,
image_processo
r
=
image_processor
,
tokenize
r
=
image_processor
,
data_collator
=
collate_fn
,
data_collator
=
collate_fn
,
)
)
...
...
examples/pytorch/image-pretraining/run_mae.py
View file @
e9c23fa0
...
@@ -369,7 +369,7 @@ def main():
...
@@ -369,7 +369,7 @@ def main():
args
=
training_args
,
args
=
training_args
,
train_dataset
=
ds
[
"train"
]
if
training_args
.
do_train
else
None
,
train_dataset
=
ds
[
"train"
]
if
training_args
.
do_train
else
None
,
eval_dataset
=
ds
[
"validation"
]
if
training_args
.
do_eval
else
None
,
eval_dataset
=
ds
[
"validation"
]
if
training_args
.
do_eval
else
None
,
image_processo
r
=
image_processor
,
tokenize
r
=
image_processor
,
data_collator
=
collate_fn
,
data_collator
=
collate_fn
,
)
)
...
...
examples/pytorch/image-pretraining/run_mim.py
View file @
e9c23fa0
...
@@ -458,7 +458,7 @@ def main():
...
@@ -458,7 +458,7 @@ def main():
args
=
training_args
,
args
=
training_args
,
train_dataset
=
ds
[
"train"
]
if
training_args
.
do_train
else
None
,
train_dataset
=
ds
[
"train"
]
if
training_args
.
do_train
else
None
,
eval_dataset
=
ds
[
"validation"
]
if
training_args
.
do_eval
else
None
,
eval_dataset
=
ds
[
"validation"
]
if
training_args
.
do_eval
else
None
,
image_processo
r
=
image_processor
,
tokenize
r
=
image_processor
,
data_collator
=
collate_fn
,
data_collator
=
collate_fn
,
)
)
...
...
examples/pytorch/semantic-segmentation/run_semantic_segmentation.py
View file @
e9c23fa0
...
@@ -510,7 +510,7 @@ def main():
...
@@ -510,7 +510,7 @@ def main():
train_dataset
=
dataset
[
"train"
]
if
training_args
.
do_train
else
None
,
train_dataset
=
dataset
[
"train"
]
if
training_args
.
do_train
else
None
,
eval_dataset
=
dataset
[
"validation"
]
if
training_args
.
do_eval
else
None
,
eval_dataset
=
dataset
[
"validation"
]
if
training_args
.
do_eval
else
None
,
compute_metrics
=
compute_metrics
,
compute_metrics
=
compute_metrics
,
image_processo
r
=
image_processor
,
tokenize
r
=
image_processor
,
data_collator
=
default_data_collator
,
data_collator
=
default_data_collator
,
)
)
...
...
examples/tensorflow/image-classification/run_image_classification.py
View file @
e9c23fa0
...
@@ -552,7 +552,7 @@ def main():
...
@@ -552,7 +552,7 @@ def main():
output_dir
=
training_args
.
output_dir
,
output_dir
=
training_args
.
output_dir
,
hub_model_id
=
push_to_hub_model_id
,
hub_model_id
=
push_to_hub_model_id
,
hub_token
=
training_args
.
push_to_hub_token
,
hub_token
=
training_args
.
push_to_hub_token
,
image_processo
r
=
image_processor
,
tokenize
r
=
image_processor
,
**
model_card_kwargs
,
**
model_card_kwargs
,
)
)
)
)
...
...
src/transformers/trainer.py
View file @
e9c23fa0
...
@@ -60,7 +60,6 @@ from .data.data_collator import DataCollator, DataCollatorWithPadding, default_d
...
@@ -60,7 +60,6 @@ from .data.data_collator import DataCollator, DataCollatorWithPadding, default_d
from
.debug_utils
import
DebugOption
,
DebugUnderflowOverflow
from
.debug_utils
import
DebugOption
,
DebugUnderflowOverflow
from
.feature_extraction_sequence_utils
import
SequenceFeatureExtractor
from
.feature_extraction_sequence_utils
import
SequenceFeatureExtractor
from
.hyperparameter_search
import
ALL_HYPERPARAMETER_SEARCH_BACKENDS
,
default_hp_search_backend
from
.hyperparameter_search
import
ALL_HYPERPARAMETER_SEARCH_BACKENDS
,
default_hp_search_backend
from
.image_processing_utils
import
BaseImageProcessor
from
.integrations.deepspeed
import
deepspeed_init
,
deepspeed_load_checkpoint
,
is_deepspeed_available
from
.integrations.deepspeed
import
deepspeed_init
,
deepspeed_load_checkpoint
,
is_deepspeed_available
from
.integrations.tpu
import
tpu_spmd_dataloader
from
.integrations.tpu
import
tpu_spmd_dataloader
from
.modelcard
import
TrainingSummary
from
.modelcard
import
TrainingSummary
...
@@ -331,9 +330,6 @@ class Trainer:
...
@@ -331,9 +330,6 @@ class Trainer:
by this function will be reflected in the predictions received by `compute_metrics`.
by this function will be reflected in the predictions received by `compute_metrics`.
Note that the labels (second parameter) will be `None` if the dataset does not have them.
Note that the labels (second parameter) will be `None` if the dataset does not have them.
image_processor ([`BaseImageProcessor`], *optional*):
The image processor used to preprocess the data. If provided, it will be saved along the model to make it easier
to rerun an interrupted training or reuse the fine-tuned model.
Important attributes:
Important attributes:
...
@@ -369,7 +365,6 @@ class Trainer:
...
@@ -369,7 +365,6 @@ class Trainer:
callbacks
:
Optional
[
List
[
TrainerCallback
]]
=
None
,
callbacks
:
Optional
[
List
[
TrainerCallback
]]
=
None
,
optimizers
:
Tuple
[
torch
.
optim
.
Optimizer
,
torch
.
optim
.
lr_scheduler
.
LambdaLR
]
=
(
None
,
None
),
optimizers
:
Tuple
[
torch
.
optim
.
Optimizer
,
torch
.
optim
.
lr_scheduler
.
LambdaLR
]
=
(
None
,
None
),
preprocess_logits_for_metrics
:
Optional
[
Callable
[[
torch
.
Tensor
,
torch
.
Tensor
],
torch
.
Tensor
]]
=
None
,
preprocess_logits_for_metrics
:
Optional
[
Callable
[[
torch
.
Tensor
,
torch
.
Tensor
],
torch
.
Tensor
]]
=
None
,
image_processor
:
Optional
[
"BaseImageProcessor"
]
=
None
,
):
):
if
args
is
None
:
if
args
is
None
:
output_dir
=
"tmp_trainer"
output_dir
=
"tmp_trainer"
...
@@ -502,7 +497,6 @@ class Trainer:
...
@@ -502,7 +497,6 @@ class Trainer:
self
.
train_dataset
=
train_dataset
self
.
train_dataset
=
train_dataset
self
.
eval_dataset
=
eval_dataset
self
.
eval_dataset
=
eval_dataset
self
.
tokenizer
=
tokenizer
self
.
tokenizer
=
tokenizer
self
.
image_processor
=
image_processor
# Bnb Quantized models doesn't support `.to` operation.
# Bnb Quantized models doesn't support `.to` operation.
if
(
if
(
...
@@ -554,7 +548,7 @@ class Trainer:
...
@@ -554,7 +548,7 @@ class Trainer:
default_callbacks
=
DEFAULT_CALLBACKS
+
get_reporting_integration_callbacks
(
self
.
args
.
report_to
)
default_callbacks
=
DEFAULT_CALLBACKS
+
get_reporting_integration_callbacks
(
self
.
args
.
report_to
)
callbacks
=
default_callbacks
if
callbacks
is
None
else
default_callbacks
+
callbacks
callbacks
=
default_callbacks
if
callbacks
is
None
else
default_callbacks
+
callbacks
self
.
callback_handler
=
CallbackHandler
(
self
.
callback_handler
=
CallbackHandler
(
callbacks
,
self
.
model
,
self
.
tokenizer
,
self
.
image_processor
,
self
.
optimizer
,
self
.
lr_scheduler
callbacks
,
self
.
model
,
self
.
tokenizer
,
self
.
optimizer
,
self
.
lr_scheduler
)
)
self
.
add_callback
(
PrinterCallback
if
self
.
args
.
disable_tqdm
else
DEFAULT_PROGRESS_CALLBACK
)
self
.
add_callback
(
PrinterCallback
if
self
.
args
.
disable_tqdm
else
DEFAULT_PROGRESS_CALLBACK
)
...
@@ -3289,8 +3283,6 @@ class Trainer:
...
@@ -3289,8 +3283,6 @@ class Trainer:
)
)
if
self
.
tokenizer
is
not
None
and
self
.
args
.
should_save
:
if
self
.
tokenizer
is
not
None
and
self
.
args
.
should_save
:
self
.
tokenizer
.
save_pretrained
(
output_dir
)
self
.
tokenizer
.
save_pretrained
(
output_dir
)
if
self
.
image_processor
is
not
None
and
self
.
args
.
should_save
:
self
.
image_processor
.
save_pretrained
(
output_dir
)
# We moved the model from TPU -> CPU for saving the weights.
# We moved the model from TPU -> CPU for saving the weights.
# Now we should move it back to subsequent compute still works.
# Now we should move it back to subsequent compute still works.
...
@@ -3328,8 +3320,6 @@ class Trainer:
...
@@ -3328,8 +3320,6 @@ class Trainer:
if
self
.
tokenizer
is
not
None
:
if
self
.
tokenizer
is
not
None
:
self
.
tokenizer
.
save_pretrained
(
output_dir
)
self
.
tokenizer
.
save_pretrained
(
output_dir
)
if
self
.
image_processor
is
not
None
:
self
.
image_processor
.
save_pretrained
(
output_dir
)
# Good practice: save your training arguments together with the trained model
# Good practice: save your training arguments together with the trained model
torch
.
save
(
self
.
args
,
os
.
path
.
join
(
output_dir
,
TRAINING_ARGS_NAME
))
torch
.
save
(
self
.
args
,
os
.
path
.
join
(
output_dir
,
TRAINING_ARGS_NAME
))
...
@@ -4027,9 +4017,6 @@ class Trainer:
...
@@ -4027,9 +4017,6 @@ class Trainer:
# Saving the tokenizer is fast and we don't know how many files it may have spawned, so we resave it to be sure.
# Saving the tokenizer is fast and we don't know how many files it may have spawned, so we resave it to be sure.
if
self
.
tokenizer
is
not
None
:
if
self
.
tokenizer
is
not
None
:
self
.
tokenizer
.
save_pretrained
(
output_dir
)
self
.
tokenizer
.
save_pretrained
(
output_dir
)
# Same for the image processor
if
self
.
image_processor
is
not
None
:
self
.
image_processor
.
save_pretrained
(
output_dir
)
# Same for the training arguments
# Same for the training arguments
torch
.
save
(
self
.
args
,
os
.
path
.
join
(
output_dir
,
TRAINING_ARGS_NAME
))
torch
.
save
(
self
.
args
,
os
.
path
.
join
(
output_dir
,
TRAINING_ARGS_NAME
))
...
@@ -4083,7 +4070,7 @@ class Trainer:
...
@@ -4083,7 +4070,7 @@ class Trainer:
**
kwargs
,
**
kwargs
,
)
->
str
:
)
->
str
:
"""
"""
Upload `self.model` and `self.tokenizer`
or `self.image_processor`
to the 🤗 model hub on the repo `self.args.hub_model_id`.
Upload `self.model` and `self.tokenizer` to the 🤗 model hub on the repo `self.args.hub_model_id`.
Parameters:
Parameters:
commit_message (`str`, *optional*, defaults to `"End of training"`):
commit_message (`str`, *optional*, defaults to `"End of training"`):
...
...
src/transformers/trainer_callback.py
View file @
e9c23fa0
...
@@ -189,8 +189,6 @@ class TrainerCallback:
...
@@ -189,8 +189,6 @@ class TrainerCallback:
The model being trained.
The model being trained.
tokenizer ([`PreTrainedTokenizer`]):
tokenizer ([`PreTrainedTokenizer`]):
The tokenizer used for encoding the data.
The tokenizer used for encoding the data.
image_processor ([`BaseImageProcessor`]):
The image processor used for encoding the images.
optimizer (`torch.optim.Optimizer`):
optimizer (`torch.optim.Optimizer`):
The optimizer used for the training steps.
The optimizer used for the training steps.
lr_scheduler (`torch.optim.lr_scheduler.LambdaLR`):
lr_scheduler (`torch.optim.lr_scheduler.LambdaLR`):
...
@@ -309,13 +307,12 @@ class TrainerCallback:
...
@@ -309,13 +307,12 @@ class TrainerCallback:
class
CallbackHandler
(
TrainerCallback
):
class
CallbackHandler
(
TrainerCallback
):
"""Internal class that just calls the list of callbacks in order."""
"""Internal class that just calls the list of callbacks in order."""
def
__init__
(
self
,
callbacks
,
model
,
tokenizer
,
image_processor
,
optimizer
,
lr_scheduler
):
def
__init__
(
self
,
callbacks
,
model
,
tokenizer
,
optimizer
,
lr_scheduler
):
self
.
callbacks
=
[]
self
.
callbacks
=
[]
for
cb
in
callbacks
:
for
cb
in
callbacks
:
self
.
add_callback
(
cb
)
self
.
add_callback
(
cb
)
self
.
model
=
model
self
.
model
=
model
self
.
tokenizer
=
tokenizer
self
.
tokenizer
=
tokenizer
self
.
image_processor
=
image_processor
self
.
optimizer
=
optimizer
self
.
optimizer
=
optimizer
self
.
lr_scheduler
=
lr_scheduler
self
.
lr_scheduler
=
lr_scheduler
self
.
train_dataloader
=
None
self
.
train_dataloader
=
None
...
@@ -420,7 +417,6 @@ class CallbackHandler(TrainerCallback):
...
@@ -420,7 +417,6 @@ class CallbackHandler(TrainerCallback):
control
,
control
,
model
=
self
.
model
,
model
=
self
.
model
,
tokenizer
=
self
.
tokenizer
,
tokenizer
=
self
.
tokenizer
,
image_processor
=
self
.
image_processor
,
optimizer
=
self
.
optimizer
,
optimizer
=
self
.
optimizer
,
lr_scheduler
=
self
.
lr_scheduler
,
lr_scheduler
=
self
.
lr_scheduler
,
train_dataloader
=
self
.
train_dataloader
,
train_dataloader
=
self
.
train_dataloader
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment