"tests/pipelines/test_pipelines_fill_mask.py" did not exist on "84caa23301f2f25dfca0737198ff26c3d711ed63"
test_pipelines_fill_mask.py 19.1 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Yih-Dar's avatar
Yih-Dar committed
15
import gc
16
17
import unittest

18
19
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
20
21
from transformers.testing_utils import (
    is_pipeline_test,
Yih-Dar's avatar
Yih-Dar committed
22
    is_torch_available,
23
24
25
26
27
28
    nested_simplify,
    require_tf,
    require_torch,
    require_torch_gpu,
    slow,
)
29

30
from .test_pipelines_common import ANY
31
32


33
@is_pipeline_test
34
class FillMaskPipelineTests(unittest.TestCase):
35
36
    model_mapping = MODEL_FOR_MASKED_LM_MAPPING
    tf_model_mapping = TF_MODEL_FOR_MASKED_LM_MAPPING
37

Yih-Dar's avatar
Yih-Dar committed
38
39
40
41
42
43
44
45
46
    def tearDown(self):
        super().tearDown()
        # clean-up as much as possible GPU memory occupied by PyTorch
        gc.collect()
        if is_torch_available():
            import torch

            torch.cuda.empty_cache()

47
48
49
50
51
52
53
54
55
56
57
    @require_tf
    def test_small_model_tf(self):
        unmasker = pipeline(task="fill-mask", model="sshleifer/tiny-distilroberta-base", top_k=2, framework="tf")
        outputs = unmasker("My name is <mask>")
        self.assertEqual(
            nested_simplify(outputs, decimals=6),
            [
                {"sequence": "My name is grouped", "score": 2.1e-05, "token": 38015, "token_str": " grouped"},
                {"sequence": "My name is accuser", "score": 2.1e-05, "token": 25506, "token_str": " accuser"},
            ],
        )
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
        outputs = unmasker("The largest city in France is <mask>")
        self.assertEqual(
            nested_simplify(outputs, decimals=6),
            [
                {
                    "sequence": "The largest city in France is grouped",
                    "score": 2.1e-05,
                    "token": 38015,
                    "token_str": " grouped",
                },
                {
                    "sequence": "The largest city in France is accuser",
                    "score": 2.1e-05,
                    "token": 25506,
                    "token_str": " accuser",
                },
            ],
        )
77

78
79
80
81
82
83
84
85
86
        outputs = unmasker("My name is <mask>", targets=[" Patrick", " Clara", " Teven"], top_k=3)
        self.assertEqual(
            nested_simplify(outputs, decimals=6),
            [
                {"sequence": "My name is Clara", "score": 2e-05, "token": 13606, "token_str": " Clara"},
                {"sequence": "My name is Patrick", "score": 2e-05, "token": 3499, "token_str": " Patrick"},
                {"sequence": "My name is Te", "score": 1.9e-05, "token": 2941, "token_str": " Te"},
            ],
        )
87
88

    @require_torch
89
90
91
92
    def test_small_model_pt(self):
        unmasker = pipeline(task="fill-mask", model="sshleifer/tiny-distilroberta-base", top_k=2, framework="pt")

        outputs = unmasker("My name is <mask>")
93
        self.assertEqual(
94
            nested_simplify(outputs, decimals=6),
95
            [
96
97
                {"sequence": "My name is Maul", "score": 2.2e-05, "token": 35676, "token_str": " Maul"},
                {"sequence": "My name isELS", "score": 2.2e-05, "token": 16416, "token_str": "ELS"},
98
99
100
            ],
        )

101
102
103
104
105
106
107
108
109
110
111
112
113
        outputs = unmasker("The largest city in France is <mask>")
        self.assertEqual(
            nested_simplify(outputs, decimals=6),
            [
                {
                    "sequence": "The largest city in France is Maul",
                    "score": 2.2e-05,
                    "token": 35676,
                    "token_str": " Maul",
                },
                {"sequence": "The largest city in France isELS", "score": 2.2e-05, "token": 16416, "token_str": "ELS"},
            ],
        )
114

115
116
117
118
119
120
121
122
123
        outputs = unmasker("My name is <mask>", targets=[" Patrick", " Clara", " Teven"], top_k=3)
        self.assertEqual(
            nested_simplify(outputs, decimals=6),
            [
                {"sequence": "My name is Patrick", "score": 2.1e-05, "token": 3499, "token_str": " Patrick"},
                {"sequence": "My name is Te", "score": 2e-05, "token": 2941, "token_str": " Te"},
                {"sequence": "My name is Clara", "score": 2e-05, "token": 13606, "token_str": " Clara"},
            ],
        )
124

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
        outputs = unmasker("My name is <mask> <mask>", top_k=2)

        self.assertEqual(
            nested_simplify(outputs, decimals=6),
            [
                [
                    {
                        "score": 2.2e-05,
                        "token": 35676,
                        "token_str": " Maul",
                        "sequence": "<s>My name is Maul<mask></s>",
                    },
                    {"score": 2.2e-05, "token": 16416, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"},
                ],
                [
                    {
                        "score": 2.2e-05,
                        "token": 35676,
                        "token_str": " Maul",
                        "sequence": "<s>My name is<mask> Maul</s>",
                    },
                    {"score": 2.2e-05, "token": 16416, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"},
                ],
            ],
        )

151
152
153
154
155
156
157
158
159
160
161
162
163
    @require_torch_gpu
    def test_fp16_casting(self):
        pipe = pipeline("fill-mask", model="hf-internal-testing/tiny-random-distilbert", device=0, framework="pt")

        # convert model to fp16
        pipe.model.half()

        response = pipe("Paris is the [MASK] of France.")
        # We actually don't care about the result, we just want to make sure
        # it works, meaning the float16 tensor got casted back to float32
        # for postprocessing.
        self.assertIsInstance(response, list)

164
165
166
167
168
169
170
    @slow
    @require_torch
    def test_large_model_pt(self):
        unmasker = pipeline(task="fill-mask", model="distilroberta-base", top_k=2, framework="pt")
        self.run_large_test(unmasker)

    @slow
171
    @require_tf
172
173
174
175
176
177
178
179
180
181
182
183
    def test_large_model_tf(self):
        unmasker = pipeline(task="fill-mask", model="distilroberta-base", top_k=2, framework="tf")
        self.run_large_test(unmasker)

    def run_large_test(self, unmasker):
        outputs = unmasker("My name is <mask>")
        self.assertEqual(
            nested_simplify(outputs),
            [
                {"sequence": "My name is John", "score": 0.008, "token": 610, "token_str": " John"},
                {"sequence": "My name is Chris", "score": 0.007, "token": 1573, "token_str": " Chris"},
            ],
184
        )
185
        outputs = unmasker("The largest city in France is <mask>")
186
187
188
        self.assertEqual(
            nested_simplify(outputs),
            [
189
190
191
192
193
194
195
196
197
198
199
200
                {
                    "sequence": "The largest city in France is Paris",
                    "score": 0.251,
                    "token": 2201,
                    "token_str": " Paris",
                },
                {
                    "sequence": "The largest city in France is Lyon",
                    "score": 0.214,
                    "token": 12790,
                    "token_str": " Lyon",
                },
201
202
            ],
        )
203
204

        outputs = unmasker("My name is <mask>", targets=[" Patrick", " Clara", " Teven"], top_k=3)
205
206
207
        self.assertEqual(
            nested_simplify(outputs),
            [
208
209
210
                {"sequence": "My name is Patrick", "score": 0.005, "token": 3499, "token_str": " Patrick"},
                {"sequence": "My name is Clara", "score": 0.000, "token": 13606, "token_str": " Clara"},
                {"sequence": "My name is Te", "score": 0.000, "token": 2941, "token_str": " Te"},
211
212
            ],
        )
213

214
215
216
217
218
219
220
221
222
223
224
225
        outputs = unmasker(
            "My name is <mask>" + "Lorem ipsum dolor sit amet, consectetur adipiscing elit," * 100,
            tokenizer_kwargs={"truncation": True},
        )
        self.assertEqual(
            nested_simplify(outputs, decimals=6),
            [
                {"sequence": "My name is grouped", "score": 2.2e-05, "token": 38015, "token_str": " grouped"},
                {"sequence": "My name is accuser", "score": 2.1e-05, "token": 25506, "token_str": " accuser"},
            ],
        )

226
    @require_torch
227
228
229
230
    def test_model_no_pad_pt(self):
        unmasker = pipeline(task="fill-mask", model="sshleifer/tiny-distilroberta-base", framework="pt")
        unmasker.tokenizer.pad_token_id = None
        unmasker.tokenizer.pad_token = None
231
        self.run_pipeline_test(unmasker, [])
232
233

    @require_tf
234
235
236
237
    def test_model_no_pad_tf(self):
        unmasker = pipeline(task="fill-mask", model="sshleifer/tiny-distilroberta-base", framework="tf")
        unmasker.tokenizer.pad_token_id = None
        unmasker.tokenizer.pad_token = None
238
        self.run_pipeline_test(unmasker, [])
239

240
    def get_test_pipeline(self, model, tokenizer, processor):
241
242
        if tokenizer is None or tokenizer.mask_token_id is None:
            self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)")
243
244

        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer)
245
246
247
248
        examples = [
            f"This is another {tokenizer.mask_token} test",
        ]
        return fill_masker, examples
249

250
251
252
253
254
255
256
    def run_pipeline_test(self, fill_masker, examples):
        tokenizer = fill_masker.tokenizer
        model = fill_masker.model

        outputs = fill_masker(
            f"This is a {tokenizer.mask_token}",
        )
257
258
259
260
        self.assertEqual(
            outputs,
            [
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
261
262
263
264
265
266
267
268
269
270
271
272
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
            ],
        )

        outputs = fill_masker([f"This is a {tokenizer.mask_token}"])
        self.assertEqual(
            outputs,
            [
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
273
274
275
276
277
278
279
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
            ],
        )

280
        outputs = fill_masker([f"This is a {tokenizer.mask_token}", f"Another {tokenizer.mask_token} great test."])
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
        self.assertEqual(
            outputs,
            [
                [
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                ],
                [
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                ],
            ],
        )

        with self.assertRaises(ValueError):
            fill_masker([None])
        # No mask_token is not supported
        with self.assertRaises(PipelineException):
            fill_masker("This is")

        self.run_test_top_k(model, tokenizer)
        self.run_test_targets(model, tokenizer)
        self.run_test_top_k_targets(model, tokenizer)
        self.fill_mask_with_duplicate_targets_and_top_k(model, tokenizer)
311
        self.fill_mask_with_multiple_masks(model, tokenizer)
312
313
314

    def run_test_targets(self, model, tokenizer):
        vocab = tokenizer.get_vocab()
315
        targets = sorted(vocab.keys())[:2]
316
317
318
319
320
321
322
323
324
325
326
        # Pipeline argument
        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer, targets=targets)
        outputs = fill_masker(f"This is a {tokenizer.mask_token}")
        self.assertEqual(
            outputs,
            [
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
            ],
        )
        target_ids = {vocab[el] for el in targets}
327
        self.assertEqual({el["token"] for el in outputs}, target_ids)
Yih-Dar's avatar
Yih-Dar committed
328
329
        processed_targets = [tokenizer.decode([x]) for x in target_ids]
        self.assertEqual({el["token_str"] for el in outputs}, set(processed_targets))
330
331
332
333
334
335
336
337
338
339
340
341

        # Call argument
        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer)
        outputs = fill_masker(f"This is a {tokenizer.mask_token}", targets=targets)
        self.assertEqual(
            outputs,
            [
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
            ],
        )
        target_ids = {vocab[el] for el in targets}
342
        self.assertEqual({el["token"] for el in outputs}, target_ids)
Yih-Dar's avatar
Yih-Dar committed
343
344
        processed_targets = [tokenizer.decode([x]) for x in target_ids]
        self.assertEqual({el["token_str"] for el in outputs}, set(processed_targets))
345
346
347
348
349
350

        # Score equivalence
        outputs = fill_masker(f"This is a {tokenizer.mask_token}", targets=targets)
        tokens = [top_mask["token_str"] for top_mask in outputs]
        scores = [top_mask["score"] for top_mask in outputs]

Yih-Dar's avatar
Yih-Dar committed
351
352
353
354
355
        # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
        if set(tokens) == set(targets):
            unmasked_targets = fill_masker(f"This is a {tokenizer.mask_token}", targets=tokens)
            target_scores = [top_mask["score"] for top_mask in unmasked_targets]
            self.assertEqual(nested_simplify(scores), nested_simplify(target_scores))
356
357
358
359

        # Raises with invalid
        with self.assertRaises(ValueError):
            outputs = fill_masker(f"This is a {tokenizer.mask_token}", targets=[])
Yih-Dar's avatar
Yih-Dar committed
360
361
362
363
364
365
        # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised
        if "" not in tokenizer.get_vocab():
            with self.assertRaises(ValueError):
                outputs = fill_masker(f"This is a {tokenizer.mask_token}", targets=[""])
            with self.assertRaises(ValueError):
                outputs = fill_masker(f"This is a {tokenizer.mask_token}", targets="")
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

    def run_test_top_k(self, model, tokenizer):
        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer, top_k=2)
        outputs = fill_masker(f"This is a {tokenizer.mask_token}")
        self.assertEqual(
            outputs,
            [
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
            ],
        )

        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer)
        outputs2 = fill_masker(f"This is a {tokenizer.mask_token}", top_k=2)
        self.assertEqual(
            outputs2,
            [
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
            ],
        )
        self.assertEqual(nested_simplify(outputs), nested_simplify(outputs2))

    def run_test_top_k_targets(self, model, tokenizer):
        vocab = tokenizer.get_vocab()
        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer)

        # top_k=2, ntargets=3
394
        targets = sorted(vocab.keys())[:3]
395
396
397
398
399
        outputs = fill_masker(f"This is a {tokenizer.mask_token}", top_k=2, targets=targets)

        # If we use the most probably targets, and filter differently, we should still
        # have the same results
        targets2 = [el["token_str"] for el in sorted(outputs, key=lambda x: x["score"], reverse=True)]
Yih-Dar's avatar
Yih-Dar committed
400
401
402
403
404
        # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
        if set(targets2).issubset(targets):
            outputs2 = fill_masker(f"This is a {tokenizer.mask_token}", top_k=3, targets=targets2)
            # They should yield exactly the same result
            self.assertEqual(nested_simplify(outputs), nested_simplify(outputs2))
405

406
407
408
409
    def fill_mask_with_duplicate_targets_and_top_k(self, model, tokenizer):
        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer)
        vocab = tokenizer.get_vocab()
        # String duplicates + id duplicates
410
        targets = sorted(vocab.keys())[:3]
411
412
413
414
415
416
        targets = [targets[0], targets[1], targets[0], targets[2], targets[1]]
        outputs = fill_masker(f"My name is {tokenizer.mask_token}", targets=targets, top_k=10)

        # The target list contains duplicates, so we can't output more
        # than them
        self.assertEqual(len(outputs), 3)
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

    def fill_mask_with_multiple_masks(self, model, tokenizer):
        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer)

        outputs = fill_masker(
            f"This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}", top_k=2
        )
        self.assertEqual(
            outputs,
            [
                [
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                ],
                [
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                ],
                [
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                ],
            ],
        )