test_pipelines_fill_mask.py 17.2 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
import unittest

17
18
19
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
20

21
from .test_pipelines_common import ANY, PipelineTestCaseMeta
22
23


24
25
26
27
@is_pipeline_test
class FillMaskPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
    model_mapping = MODEL_FOR_MASKED_LM_MAPPING
    tf_model_mapping = TF_MODEL_FOR_MASKED_LM_MAPPING
28

29
30
31
32
33
34
35
36
37
38
39
    @require_tf
    def test_small_model_tf(self):
        unmasker = pipeline(task="fill-mask", model="sshleifer/tiny-distilroberta-base", top_k=2, framework="tf")
        outputs = unmasker("My name is <mask>")
        self.assertEqual(
            nested_simplify(outputs, decimals=6),
            [
                {"sequence": "My name is grouped", "score": 2.1e-05, "token": 38015, "token_str": " grouped"},
                {"sequence": "My name is accuser", "score": 2.1e-05, "token": 25506, "token_str": " accuser"},
            ],
        )
40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
        outputs = unmasker("The largest city in France is <mask>")
        self.assertEqual(
            nested_simplify(outputs, decimals=6),
            [
                {
                    "sequence": "The largest city in France is grouped",
                    "score": 2.1e-05,
                    "token": 38015,
                    "token_str": " grouped",
                },
                {
                    "sequence": "The largest city in France is accuser",
                    "score": 2.1e-05,
                    "token": 25506,
                    "token_str": " accuser",
                },
            ],
        )
59

60
61
62
63
64
65
66
67
68
        outputs = unmasker("My name is <mask>", targets=[" Patrick", " Clara", " Teven"], top_k=3)
        self.assertEqual(
            nested_simplify(outputs, decimals=6),
            [
                {"sequence": "My name is Clara", "score": 2e-05, "token": 13606, "token_str": " Clara"},
                {"sequence": "My name is Patrick", "score": 2e-05, "token": 3499, "token_str": " Patrick"},
                {"sequence": "My name is Te", "score": 1.9e-05, "token": 2941, "token_str": " Te"},
            ],
        )
69
70

    @require_torch
71
72
73
74
    def test_small_model_pt(self):
        unmasker = pipeline(task="fill-mask", model="sshleifer/tiny-distilroberta-base", top_k=2, framework="pt")

        outputs = unmasker("My name is <mask>")
75
        self.assertEqual(
76
            nested_simplify(outputs, decimals=6),
77
            [
78
79
                {"sequence": "My name is Maul", "score": 2.2e-05, "token": 35676, "token_str": " Maul"},
                {"sequence": "My name isELS", "score": 2.2e-05, "token": 16416, "token_str": "ELS"},
80
81
82
            ],
        )

83
84
85
86
87
88
89
90
91
92
93
94
95
        outputs = unmasker("The largest city in France is <mask>")
        self.assertEqual(
            nested_simplify(outputs, decimals=6),
            [
                {
                    "sequence": "The largest city in France is Maul",
                    "score": 2.2e-05,
                    "token": 35676,
                    "token_str": " Maul",
                },
                {"sequence": "The largest city in France isELS", "score": 2.2e-05, "token": 16416, "token_str": "ELS"},
            ],
        )
96

97
98
99
100
101
102
103
104
105
        outputs = unmasker("My name is <mask>", targets=[" Patrick", " Clara", " Teven"], top_k=3)
        self.assertEqual(
            nested_simplify(outputs, decimals=6),
            [
                {"sequence": "My name is Patrick", "score": 2.1e-05, "token": 3499, "token_str": " Patrick"},
                {"sequence": "My name is Te", "score": 2e-05, "token": 2941, "token_str": " Te"},
                {"sequence": "My name is Clara", "score": 2e-05, "token": 13606, "token_str": " Clara"},
            ],
        )
106

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
        outputs = unmasker("My name is <mask> <mask>", top_k=2)

        self.assertEqual(
            nested_simplify(outputs, decimals=6),
            [
                [
                    {
                        "score": 2.2e-05,
                        "token": 35676,
                        "token_str": " Maul",
                        "sequence": "<s>My name is Maul<mask></s>",
                    },
                    {"score": 2.2e-05, "token": 16416, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"},
                ],
                [
                    {
                        "score": 2.2e-05,
                        "token": 35676,
                        "token_str": " Maul",
                        "sequence": "<s>My name is<mask> Maul</s>",
                    },
                    {"score": 2.2e-05, "token": 16416, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"},
                ],
            ],
        )

133
134
135
136
137
138
139
    @slow
    @require_torch
    def test_large_model_pt(self):
        unmasker = pipeline(task="fill-mask", model="distilroberta-base", top_k=2, framework="pt")
        self.run_large_test(unmasker)

    @slow
140
    @require_tf
141
142
143
144
145
146
147
148
149
150
151
152
    def test_large_model_tf(self):
        unmasker = pipeline(task="fill-mask", model="distilroberta-base", top_k=2, framework="tf")
        self.run_large_test(unmasker)

    def run_large_test(self, unmasker):
        outputs = unmasker("My name is <mask>")
        self.assertEqual(
            nested_simplify(outputs),
            [
                {"sequence": "My name is John", "score": 0.008, "token": 610, "token_str": " John"},
                {"sequence": "My name is Chris", "score": 0.007, "token": 1573, "token_str": " Chris"},
            ],
153
        )
154
        outputs = unmasker("The largest city in France is <mask>")
155
156
157
        self.assertEqual(
            nested_simplify(outputs),
            [
158
159
160
161
162
163
164
165
166
167
168
169
                {
                    "sequence": "The largest city in France is Paris",
                    "score": 0.251,
                    "token": 2201,
                    "token_str": " Paris",
                },
                {
                    "sequence": "The largest city in France is Lyon",
                    "score": 0.214,
                    "token": 12790,
                    "token_str": " Lyon",
                },
170
171
            ],
        )
172
173

        outputs = unmasker("My name is <mask>", targets=[" Patrick", " Clara", " Teven"], top_k=3)
174
175
176
        self.assertEqual(
            nested_simplify(outputs),
            [
177
178
179
                {"sequence": "My name is Patrick", "score": 0.005, "token": 3499, "token_str": " Patrick"},
                {"sequence": "My name is Clara", "score": 0.000, "token": 13606, "token_str": " Clara"},
                {"sequence": "My name is Te", "score": 0.000, "token": 2941, "token_str": " Te"},
180
181
            ],
        )
182
183

    @require_torch
184
185
186
187
    def test_model_no_pad_pt(self):
        unmasker = pipeline(task="fill-mask", model="sshleifer/tiny-distilroberta-base", framework="pt")
        unmasker.tokenizer.pad_token_id = None
        unmasker.tokenizer.pad_token = None
188
        self.run_pipeline_test(unmasker, [])
189
190

    @require_tf
191
192
193
194
    def test_model_no_pad_tf(self):
        unmasker = pipeline(task="fill-mask", model="sshleifer/tiny-distilroberta-base", framework="tf")
        unmasker.tokenizer.pad_token_id = None
        unmasker.tokenizer.pad_token = None
195
        self.run_pipeline_test(unmasker, [])
196

197
    def get_test_pipeline(self, model, tokenizer, feature_extractor):
198
199
        if tokenizer is None or tokenizer.mask_token_id is None:
            self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)")
200
201

        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer)
202
203
204
205
        examples = [
            f"This is another {tokenizer.mask_token} test",
        ]
        return fill_masker, examples
206

207
208
209
210
211
212
213
    def run_pipeline_test(self, fill_masker, examples):
        tokenizer = fill_masker.tokenizer
        model = fill_masker.model

        outputs = fill_masker(
            f"This is a {tokenizer.mask_token}",
        )
214
215
216
217
        self.assertEqual(
            outputs,
            [
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
218
219
220
221
222
223
224
225
226
227
228
229
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
            ],
        )

        outputs = fill_masker([f"This is a {tokenizer.mask_token}"])
        self.assertEqual(
            outputs,
            [
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
230
231
232
233
234
235
236
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
            ],
        )

237
        outputs = fill_masker([f"This is a {tokenizer.mask_token}", f"Another {tokenizer.mask_token} great test."])
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
        self.assertEqual(
            outputs,
            [
                [
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                ],
                [
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                ],
            ],
        )

        with self.assertRaises(ValueError):
            fill_masker([None])
        # No mask_token is not supported
        with self.assertRaises(PipelineException):
            fill_masker("This is")

        self.run_test_top_k(model, tokenizer)
        self.run_test_targets(model, tokenizer)
        self.run_test_top_k_targets(model, tokenizer)
        self.fill_mask_with_duplicate_targets_and_top_k(model, tokenizer)
268
        self.fill_mask_with_multiple_masks(model, tokenizer)
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

    def run_test_targets(self, model, tokenizer):
        vocab = tokenizer.get_vocab()
        targets = list(sorted(vocab.keys()))[:2]
        # Pipeline argument
        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer, targets=targets)
        outputs = fill_masker(f"This is a {tokenizer.mask_token}")
        self.assertEqual(
            outputs,
            [
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
            ],
        )
        target_ids = {vocab[el] for el in targets}
        self.assertEqual(set(el["token"] for el in outputs), target_ids)
        self.assertEqual(set(el["token_str"] for el in outputs), set(targets))

        # Call argument
        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer)
        outputs = fill_masker(f"This is a {tokenizer.mask_token}", targets=targets)
        self.assertEqual(
            outputs,
            [
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
            ],
        )
        target_ids = {vocab[el] for el in targets}
        self.assertEqual(set(el["token"] for el in outputs), target_ids)
        self.assertEqual(set(el["token_str"] for el in outputs), set(targets))

        # Score equivalence
        outputs = fill_masker(f"This is a {tokenizer.mask_token}", targets=targets)
        tokens = [top_mask["token_str"] for top_mask in outputs]
        scores = [top_mask["score"] for top_mask in outputs]

        unmasked_targets = fill_masker(f"This is a {tokenizer.mask_token}", targets=tokens)
307
        target_scores = [top_mask["score"] for top_mask in unmasked_targets]
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
        self.assertEqual(nested_simplify(scores), nested_simplify(target_scores))

        # Raises with invalid
        with self.assertRaises(ValueError):
            outputs = fill_masker(f"This is a {tokenizer.mask_token}", targets=[""])
        with self.assertRaises(ValueError):
            outputs = fill_masker(f"This is a {tokenizer.mask_token}", targets=[])
        with self.assertRaises(ValueError):
            outputs = fill_masker(f"This is a {tokenizer.mask_token}", targets="")

    def run_test_top_k(self, model, tokenizer):
        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer, top_k=2)
        outputs = fill_masker(f"This is a {tokenizer.mask_token}")
        self.assertEqual(
            outputs,
            [
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
            ],
        )

        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer)
        outputs2 = fill_masker(f"This is a {tokenizer.mask_token}", top_k=2)
        self.assertEqual(
            outputs2,
            [
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
            ],
        )
        self.assertEqual(nested_simplify(outputs), nested_simplify(outputs2))

    def run_test_top_k_targets(self, model, tokenizer):
        vocab = tokenizer.get_vocab()
        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer)

        # top_k=2, ntargets=3
        targets = list(sorted(vocab.keys()))[:3]
        outputs = fill_masker(f"This is a {tokenizer.mask_token}", top_k=2, targets=targets)

        # If we use the most probably targets, and filter differently, we should still
        # have the same results
        targets2 = [el["token_str"] for el in sorted(outputs, key=lambda x: x["score"], reverse=True)]
        outputs2 = fill_masker(f"This is a {tokenizer.mask_token}", top_k=3, targets=targets2)

        # They should yield exactly the same result
        self.assertEqual(nested_simplify(outputs), nested_simplify(outputs2))
355

356
357
358
359
360
361
362
363
364
365
366
    def fill_mask_with_duplicate_targets_and_top_k(self, model, tokenizer):
        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer)
        vocab = tokenizer.get_vocab()
        # String duplicates + id duplicates
        targets = list(sorted(vocab.keys()))[:3]
        targets = [targets[0], targets[1], targets[0], targets[2], targets[1]]
        outputs = fill_masker(f"My name is {tokenizer.mask_token}", targets=targets, top_k=10)

        # The target list contains duplicates, so we can't output more
        # than them
        self.assertEqual(len(outputs), 3)
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390

    def fill_mask_with_multiple_masks(self, model, tokenizer):
        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer)

        outputs = fill_masker(
            f"This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}", top_k=2
        )
        self.assertEqual(
            outputs,
            [
                [
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                ],
                [
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                ],
                [
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                ],
            ],
        )