test_pipelines_fill_mask.py 18.6 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Yih-Dar's avatar
Yih-Dar committed
15
import gc
16
17
import unittest

18
19
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
20
21
from transformers.testing_utils import (
    is_pipeline_test,
Yih-Dar's avatar
Yih-Dar committed
22
    is_torch_available,
23
24
25
26
27
28
    nested_simplify,
    require_tf,
    require_torch,
    require_torch_gpu,
    slow,
)
29

30
from .test_pipelines_common import ANY
31
32


33
@is_pipeline_test
34
class FillMaskPipelineTests(unittest.TestCase):
35
36
    model_mapping = MODEL_FOR_MASKED_LM_MAPPING
    tf_model_mapping = TF_MODEL_FOR_MASKED_LM_MAPPING
37

Yih-Dar's avatar
Yih-Dar committed
38
39
40
41
42
43
44
45
46
    def tearDown(self):
        super().tearDown()
        # clean-up as much as possible GPU memory occupied by PyTorch
        gc.collect()
        if is_torch_available():
            import torch

            torch.cuda.empty_cache()

47
48
49
50
51
52
53
54
55
56
57
    @require_tf
    def test_small_model_tf(self):
        unmasker = pipeline(task="fill-mask", model="sshleifer/tiny-distilroberta-base", top_k=2, framework="tf")
        outputs = unmasker("My name is <mask>")
        self.assertEqual(
            nested_simplify(outputs, decimals=6),
            [
                {"sequence": "My name is grouped", "score": 2.1e-05, "token": 38015, "token_str": " grouped"},
                {"sequence": "My name is accuser", "score": 2.1e-05, "token": 25506, "token_str": " accuser"},
            ],
        )
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
        outputs = unmasker("The largest city in France is <mask>")
        self.assertEqual(
            nested_simplify(outputs, decimals=6),
            [
                {
                    "sequence": "The largest city in France is grouped",
                    "score": 2.1e-05,
                    "token": 38015,
                    "token_str": " grouped",
                },
                {
                    "sequence": "The largest city in France is accuser",
                    "score": 2.1e-05,
                    "token": 25506,
                    "token_str": " accuser",
                },
            ],
        )
77

78
79
80
81
82
83
84
85
86
        outputs = unmasker("My name is <mask>", targets=[" Patrick", " Clara", " Teven"], top_k=3)
        self.assertEqual(
            nested_simplify(outputs, decimals=6),
            [
                {"sequence": "My name is Clara", "score": 2e-05, "token": 13606, "token_str": " Clara"},
                {"sequence": "My name is Patrick", "score": 2e-05, "token": 3499, "token_str": " Patrick"},
                {"sequence": "My name is Te", "score": 1.9e-05, "token": 2941, "token_str": " Te"},
            ],
        )
87
88

    @require_torch
89
90
91
92
    def test_small_model_pt(self):
        unmasker = pipeline(task="fill-mask", model="sshleifer/tiny-distilroberta-base", top_k=2, framework="pt")

        outputs = unmasker("My name is <mask>")
93
        self.assertEqual(
94
            nested_simplify(outputs, decimals=6),
95
            [
96
97
                {"sequence": "My name is Maul", "score": 2.2e-05, "token": 35676, "token_str": " Maul"},
                {"sequence": "My name isELS", "score": 2.2e-05, "token": 16416, "token_str": "ELS"},
98
99
100
            ],
        )

101
102
103
104
105
106
107
108
109
110
111
112
113
        outputs = unmasker("The largest city in France is <mask>")
        self.assertEqual(
            nested_simplify(outputs, decimals=6),
            [
                {
                    "sequence": "The largest city in France is Maul",
                    "score": 2.2e-05,
                    "token": 35676,
                    "token_str": " Maul",
                },
                {"sequence": "The largest city in France isELS", "score": 2.2e-05, "token": 16416, "token_str": "ELS"},
            ],
        )
114

115
116
117
118
119
120
121
122
123
        outputs = unmasker("My name is <mask>", targets=[" Patrick", " Clara", " Teven"], top_k=3)
        self.assertEqual(
            nested_simplify(outputs, decimals=6),
            [
                {"sequence": "My name is Patrick", "score": 2.1e-05, "token": 3499, "token_str": " Patrick"},
                {"sequence": "My name is Te", "score": 2e-05, "token": 2941, "token_str": " Te"},
                {"sequence": "My name is Clara", "score": 2e-05, "token": 13606, "token_str": " Clara"},
            ],
        )
124

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
        outputs = unmasker("My name is <mask> <mask>", top_k=2)

        self.assertEqual(
            nested_simplify(outputs, decimals=6),
            [
                [
                    {
                        "score": 2.2e-05,
                        "token": 35676,
                        "token_str": " Maul",
                        "sequence": "<s>My name is Maul<mask></s>",
                    },
                    {"score": 2.2e-05, "token": 16416, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"},
                ],
                [
                    {
                        "score": 2.2e-05,
                        "token": 35676,
                        "token_str": " Maul",
                        "sequence": "<s>My name is<mask> Maul</s>",
                    },
                    {"score": 2.2e-05, "token": 16416, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"},
                ],
            ],
        )

151
152
153
154
155
156
157
158
159
160
161
162
163
    @require_torch_gpu
    def test_fp16_casting(self):
        pipe = pipeline("fill-mask", model="hf-internal-testing/tiny-random-distilbert", device=0, framework="pt")

        # convert model to fp16
        pipe.model.half()

        response = pipe("Paris is the [MASK] of France.")
        # We actually don't care about the result, we just want to make sure
        # it works, meaning the float16 tensor got casted back to float32
        # for postprocessing.
        self.assertIsInstance(response, list)

164
165
166
167
168
169
170
    @slow
    @require_torch
    def test_large_model_pt(self):
        unmasker = pipeline(task="fill-mask", model="distilroberta-base", top_k=2, framework="pt")
        self.run_large_test(unmasker)

    @slow
171
    @require_tf
172
173
174
175
176
177
178
179
180
181
182
183
    def test_large_model_tf(self):
        unmasker = pipeline(task="fill-mask", model="distilroberta-base", top_k=2, framework="tf")
        self.run_large_test(unmasker)

    def run_large_test(self, unmasker):
        outputs = unmasker("My name is <mask>")
        self.assertEqual(
            nested_simplify(outputs),
            [
                {"sequence": "My name is John", "score": 0.008, "token": 610, "token_str": " John"},
                {"sequence": "My name is Chris", "score": 0.007, "token": 1573, "token_str": " Chris"},
            ],
184
        )
185
        outputs = unmasker("The largest city in France is <mask>")
186
187
188
        self.assertEqual(
            nested_simplify(outputs),
            [
189
190
191
192
193
194
195
196
197
198
199
200
                {
                    "sequence": "The largest city in France is Paris",
                    "score": 0.251,
                    "token": 2201,
                    "token_str": " Paris",
                },
                {
                    "sequence": "The largest city in France is Lyon",
                    "score": 0.214,
                    "token": 12790,
                    "token_str": " Lyon",
                },
201
202
            ],
        )
203
204

        outputs = unmasker("My name is <mask>", targets=[" Patrick", " Clara", " Teven"], top_k=3)
205
206
207
        self.assertEqual(
            nested_simplify(outputs),
            [
208
209
210
                {"sequence": "My name is Patrick", "score": 0.005, "token": 3499, "token_str": " Patrick"},
                {"sequence": "My name is Clara", "score": 0.000, "token": 13606, "token_str": " Clara"},
                {"sequence": "My name is Te", "score": 0.000, "token": 2941, "token_str": " Te"},
211
212
            ],
        )
213
214

    @require_torch
215
216
217
218
    def test_model_no_pad_pt(self):
        unmasker = pipeline(task="fill-mask", model="sshleifer/tiny-distilroberta-base", framework="pt")
        unmasker.tokenizer.pad_token_id = None
        unmasker.tokenizer.pad_token = None
219
        self.run_pipeline_test(unmasker, [])
220
221

    @require_tf
222
223
224
225
    def test_model_no_pad_tf(self):
        unmasker = pipeline(task="fill-mask", model="sshleifer/tiny-distilroberta-base", framework="tf")
        unmasker.tokenizer.pad_token_id = None
        unmasker.tokenizer.pad_token = None
226
        self.run_pipeline_test(unmasker, [])
227

228
    def get_test_pipeline(self, model, tokenizer, processor):
229
230
        if tokenizer is None or tokenizer.mask_token_id is None:
            self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)")
231
232

        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer)
233
234
235
236
        examples = [
            f"This is another {tokenizer.mask_token} test",
        ]
        return fill_masker, examples
237

238
239
240
241
242
243
244
    def run_pipeline_test(self, fill_masker, examples):
        tokenizer = fill_masker.tokenizer
        model = fill_masker.model

        outputs = fill_masker(
            f"This is a {tokenizer.mask_token}",
        )
245
246
247
248
        self.assertEqual(
            outputs,
            [
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
249
250
251
252
253
254
255
256
257
258
259
260
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
            ],
        )

        outputs = fill_masker([f"This is a {tokenizer.mask_token}"])
        self.assertEqual(
            outputs,
            [
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
261
262
263
264
265
266
267
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
            ],
        )

268
        outputs = fill_masker([f"This is a {tokenizer.mask_token}", f"Another {tokenizer.mask_token} great test."])
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
        self.assertEqual(
            outputs,
            [
                [
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                ],
                [
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                ],
            ],
        )

        with self.assertRaises(ValueError):
            fill_masker([None])
        # No mask_token is not supported
        with self.assertRaises(PipelineException):
            fill_masker("This is")

        self.run_test_top_k(model, tokenizer)
        self.run_test_targets(model, tokenizer)
        self.run_test_top_k_targets(model, tokenizer)
        self.fill_mask_with_duplicate_targets_and_top_k(model, tokenizer)
299
        self.fill_mask_with_multiple_masks(model, tokenizer)
300
301
302

    def run_test_targets(self, model, tokenizer):
        vocab = tokenizer.get_vocab()
303
        targets = sorted(vocab.keys())[:2]
304
305
306
307
308
309
310
311
312
313
314
        # Pipeline argument
        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer, targets=targets)
        outputs = fill_masker(f"This is a {tokenizer.mask_token}")
        self.assertEqual(
            outputs,
            [
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
            ],
        )
        target_ids = {vocab[el] for el in targets}
315
        self.assertEqual({el["token"] for el in outputs}, target_ids)
Yih-Dar's avatar
Yih-Dar committed
316
317
        processed_targets = [tokenizer.decode([x]) for x in target_ids]
        self.assertEqual({el["token_str"] for el in outputs}, set(processed_targets))
318
319
320
321
322
323
324
325
326
327
328
329

        # Call argument
        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer)
        outputs = fill_masker(f"This is a {tokenizer.mask_token}", targets=targets)
        self.assertEqual(
            outputs,
            [
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
            ],
        )
        target_ids = {vocab[el] for el in targets}
330
        self.assertEqual({el["token"] for el in outputs}, target_ids)
Yih-Dar's avatar
Yih-Dar committed
331
332
        processed_targets = [tokenizer.decode([x]) for x in target_ids]
        self.assertEqual({el["token_str"] for el in outputs}, set(processed_targets))
333
334
335
336
337
338

        # Score equivalence
        outputs = fill_masker(f"This is a {tokenizer.mask_token}", targets=targets)
        tokens = [top_mask["token_str"] for top_mask in outputs]
        scores = [top_mask["score"] for top_mask in outputs]

Yih-Dar's avatar
Yih-Dar committed
339
340
341
342
343
        # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
        if set(tokens) == set(targets):
            unmasked_targets = fill_masker(f"This is a {tokenizer.mask_token}", targets=tokens)
            target_scores = [top_mask["score"] for top_mask in unmasked_targets]
            self.assertEqual(nested_simplify(scores), nested_simplify(target_scores))
344
345
346
347

        # Raises with invalid
        with self.assertRaises(ValueError):
            outputs = fill_masker(f"This is a {tokenizer.mask_token}", targets=[])
Yih-Dar's avatar
Yih-Dar committed
348
349
350
351
352
353
        # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised
        if "" not in tokenizer.get_vocab():
            with self.assertRaises(ValueError):
                outputs = fill_masker(f"This is a {tokenizer.mask_token}", targets=[""])
            with self.assertRaises(ValueError):
                outputs = fill_masker(f"This is a {tokenizer.mask_token}", targets="")
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381

    def run_test_top_k(self, model, tokenizer):
        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer, top_k=2)
        outputs = fill_masker(f"This is a {tokenizer.mask_token}")
        self.assertEqual(
            outputs,
            [
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
            ],
        )

        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer)
        outputs2 = fill_masker(f"This is a {tokenizer.mask_token}", top_k=2)
        self.assertEqual(
            outputs2,
            [
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
            ],
        )
        self.assertEqual(nested_simplify(outputs), nested_simplify(outputs2))

    def run_test_top_k_targets(self, model, tokenizer):
        vocab = tokenizer.get_vocab()
        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer)

        # top_k=2, ntargets=3
382
        targets = sorted(vocab.keys())[:3]
383
384
385
386
387
        outputs = fill_masker(f"This is a {tokenizer.mask_token}", top_k=2, targets=targets)

        # If we use the most probably targets, and filter differently, we should still
        # have the same results
        targets2 = [el["token_str"] for el in sorted(outputs, key=lambda x: x["score"], reverse=True)]
Yih-Dar's avatar
Yih-Dar committed
388
389
390
391
392
        # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
        if set(targets2).issubset(targets):
            outputs2 = fill_masker(f"This is a {tokenizer.mask_token}", top_k=3, targets=targets2)
            # They should yield exactly the same result
            self.assertEqual(nested_simplify(outputs), nested_simplify(outputs2))
393

394
395
396
397
    def fill_mask_with_duplicate_targets_and_top_k(self, model, tokenizer):
        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer)
        vocab = tokenizer.get_vocab()
        # String duplicates + id duplicates
398
        targets = sorted(vocab.keys())[:3]
399
400
401
402
403
404
        targets = [targets[0], targets[1], targets[0], targets[2], targets[1]]
        outputs = fill_masker(f"My name is {tokenizer.mask_token}", targets=targets, top_k=10)

        # The target list contains duplicates, so we can't output more
        # than them
        self.assertEqual(len(outputs), 3)
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428

    def fill_mask_with_multiple_masks(self, model, tokenizer):
        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer)

        outputs = fill_masker(
            f"This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}", top_k=2
        )
        self.assertEqual(
            outputs,
            [
                [
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                ],
                [
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                ],
                [
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                ],
            ],
        )