run_classifier.py 24.9 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

22
23
import csv
import os
24
25
import logging
import argparse
VictorSanh's avatar
VictorSanh committed
26
import random
thomwolf's avatar
thomwolf committed
27
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
28
29

import numpy as np
VictorSanh's avatar
VictorSanh committed
30
import torch
31
32
33
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler

34
from pytorch_pretrained_bert.tokenization import BertTokenizer
thomwolf's avatar
thomwolf committed
35
36
from pytorch_pretrained_bert.modeling import BertForSequenceClassification
from pytorch_pretrained_bert.optimization import BertAdam
37
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE
38

39
40
41
42
43
44
45
try:
    from apex.optimizers import FP16_Optimizer
    from apex.optimizers import FusedAdam
    from apex.parallel import DistributedDataParallel as DDP
except ImportError:
    raise ImportError("Please install apex from https://www.github.com/nvidia/apex to run this.")

46
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
47
48
49
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

class InputExample(object):
    """A single training/test example for simple sequence classification."""

    def __init__(self, guid, text_a, text_b=None, label=None):
        """Constructs a InputExample.

        Args:
            guid: Unique id for the example.
            text_a: string. The untokenized text of the first sequence. For single
            sequence tasks, only this sequence must be specified.
            text_b: (Optional) string. The untokenized text of the second sequence.
            Only must be specified for sequence pair tasks.
            label: (Optional) string. The label of the example. This should be
            specified for train and dev examples, but not for test examples.
        """
        self.guid = guid
        self.text_a = text_a
        self.text_b = text_b
        self.label = label


class InputFeatures(object):
    """A single set of features of data."""

    def __init__(self, input_ids, input_mask, segment_ids, label_id):
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.segment_ids = segment_ids
        self.label_id = label_id
thomwolf's avatar
thomwolf committed
81

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

class DataProcessor(object):
    """Base class for data converters for sequence classification data sets."""

    def get_train_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the train set."""
        raise NotImplementedError()

    def get_dev_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the dev set."""
        raise NotImplementedError()

    def get_labels(self):
        """Gets the list of labels for this data set."""
        raise NotImplementedError()

    @classmethod
    def _read_tsv(cls, input_file, quotechar=None):
        """Reads a tab separated value file."""
        with open(input_file, "r") as f:
            reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
            lines = []
            for line in reader:
                lines.append(line)
            return lines
thomwolf's avatar
thomwolf committed
107
108


VictorSanh's avatar
wip  
VictorSanh committed
109
110
111
112
113
class MrpcProcessor(DataProcessor):
    """Processor for the MRPC data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
thomwolf's avatar
thomwolf committed
114
        logger.info("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv")))
VictorSanh's avatar
wip  
VictorSanh committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, i)
134
135
136
            text_a = line[3]
            text_b = line[4]
            label = line[0]
VictorSanh's avatar
wip  
VictorSanh committed
137
138
139
140
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

class MnliProcessor(DataProcessor):
    """Processor for the MultiNLI data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
            "dev_matched")

    def get_labels(self):
        """See base class."""
        return ["contradiction", "entailment", "neutral"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
166
            guid = "%s-%s" % (set_type, line[0])
167
168
            text_a = line[8]
            text_b = line[9]
169
            label = line[-1]
170
171
172
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples
thomwolf's avatar
thomwolf committed
173

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

class ColaProcessor(DataProcessor):
    """Processor for the CoLA data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            guid = "%s-%s" % (set_type, i)
197
198
            text_a = line[3]
            label = line[1]
199
200
201
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
        return examples
thomwolf's avatar
thomwolf committed
202
203
204


def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer):
205
206
    """Loads a data file into a list of `InputBatch`s."""

207
    label_map = {label : i for i, label in enumerate(label_list)}
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

    features = []
    for (ex_index, example) in enumerate(examples):
        tokens_a = tokenizer.tokenize(example.text_a)

        tokens_b = None
        if example.text_b:
            tokens_b = tokenizer.tokenize(example.text_b)
            # Modifies `tokens_a` and `tokens_b` in place so that the total
            # length is less than the specified length.
            # Account for [CLS], [SEP], [SEP] with "- 3"
            _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
        else:
            # Account for [CLS] and [SEP] with "- 2"
            if len(tokens_a) > max_seq_length - 2:
223
                tokens_a = tokens_a[:(max_seq_length - 2)]
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

        # The convention in BERT is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
        #  type_ids: 0   0  0    0    0     0       0 0    1  1  1  1   1 1
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
        #  type_ids: 0   0   0   0  0     0 0
        #
        # Where "type_ids" are used to indicate whether this is the first
        # sequence or the second sequence. The embedding vectors for `type=0` and
        # `type=1` were learned during pre-training and are added to the wordpiece
        # embedding vector (and position vector). This is not *strictly* necessary
        # since the [SEP] token unambigiously separates the sequences, but it makes
        # it easier for the model to learn the concept of sequences.
        #
        # For classification tasks, the first vector (corresponding to [CLS]) is
        # used as as the "sentence vector". Note that this only makes sense because
        # the entire model is fine-tuned.
243
244
        tokens = ["[CLS]"] + tokens_a + ["[SEP]"]
        segment_ids = [0] * len(tokens)
245
246

        if tokens_b:
247
248
            tokens += tokens_b + ["[SEP]"]
            segment_ids += [1] * (len(tokens_b) + 1)
249
250
251
252
253
254
255
256

        input_ids = tokenizer.convert_tokens_to_ids(tokens)

        # The mask has 1 for real tokens and 0 for padding tokens. Only real
        # tokens are attended to.
        input_mask = [1] * len(input_ids)

        # Zero-pad up to the sequence length.
257
258
259
260
        padding = [0] * (max_seq_length - len(input_ids))
        input_ids += padding
        input_mask += padding
        segment_ids += padding
261
262
263
264
265
266
267
268
269
270

        assert len(input_ids) == max_seq_length
        assert len(input_mask) == max_seq_length
        assert len(segment_ids) == max_seq_length

        label_id = label_map[example.label]
        if ex_index < 5:
            logger.info("*** Example ***")
            logger.info("guid: %s" % (example.guid))
            logger.info("tokens: %s" % " ".join(
271
                    [str(x) for x in tokens]))
272
273
274
275
276
277
278
            logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
            logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
            logger.info(
                    "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
            logger.info("label: %s (id = %d)" % (example.label, label_id))

        features.append(
thomwolf's avatar
thomwolf committed
279
280
281
282
                InputFeatures(input_ids=input_ids,
                              input_mask=input_mask,
                              segment_ids=segment_ids,
                              label_id=label_id))
283
    return features
thomwolf's avatar
thomwolf committed
284
285


286
287
288
289
290
291
292
293
294
295
296
297
298
299
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
    """Truncates a sequence pair in place to the maximum length."""

    # This is a simple heuristic which will always truncate the longer sequence
    # one token at a time. This makes more sense than truncating an equal percent
    # of tokens from each, since if one sequence is very short then each token
    # that's truncated likely contains more information than a longer sequence.
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_length:
            break
        if len(tokens_a) > len(tokens_b):
            tokens_a.pop()
        else:
VictorSanh's avatar
VictorSanh committed
300
301
            tokens_b.pop()

302
303
def accuracy(out, labels):
    outputs = np.argmax(out, axis=1)
thomwolf's avatar
thomwolf committed
304
    return np.sum(outputs == labels)
VictorSanh's avatar
WIP  
VictorSanh committed
305

306
307
308
309
def warmup_linear(x, warmup=0.002):
    if x < warmup:
        return x/warmup
    return 1.0 - x
thomwolf's avatar
thomwolf committed
310

311
def main():
312
313
314
315
316
317
318
319
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
thomwolf's avatar
thomwolf committed
320
321
322
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
                             "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
323
324
325
326
327
328
329
330
331
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument("--output_dir",
                        default=None,
                        type=str,
                        required=True,
332
                        help="The output directory where the model predictions and checkpoints will be written.")
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

    ## Other parameters
    parser.add_argument("--max_seq_length",
                        default=128,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        default=False,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
thomwolf's avatar
thomwolf committed
349
350
351
352
    parser.add_argument("--do_lower_case",
                        default=False,
                        action='store_true',
                        help="Set this flag if you are using an uncased model.")
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
382
383
    parser.add_argument('--seed',
                        type=int,
VictorSanh's avatar
VictorSanh committed
384
385
                        default=42,
                        help="random seed for initialization")
386
387
388
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
389
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
thomwolf's avatar
thomwolf committed
390
391
392
393
394
    parser.add_argument('--fp16',
                        default=False,
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale',
395
396
397
398
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
thomwolf's avatar
thomwolf committed
399

400
401
    args = parser.parse_args()

VictorSanh's avatar
WIP  
VictorSanh committed
402
403
404
405
406
    processors = {
        "cola": ColaProcessor,
        "mnli": MnliProcessor,
        "mrpc": MrpcProcessor,
    }
thomwolf's avatar
thomwolf committed
407

408
409
410
411
412
413
    num_labels_task = {
        "cola": 2,
        "mnli": 3,
        "mrpc": 2,
    }

thomwolf's avatar
thomwolf committed
414
415
416
417
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
418
        torch.cuda.set_device(args.local_rank)
thomwolf's avatar
thomwolf committed
419
420
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
thomwolf's avatar
thomwolf committed
421
422
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
423
    logger.info("device %s n_gpu %d distributed training %r", device, n_gpu, bool(args.local_rank != -1))
thomwolf's avatar
thomwolf committed
424

425
426
427
    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))
thomwolf's avatar
thomwolf committed
428

429
    args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps)
thomwolf's avatar
thomwolf committed
430

VictorSanh's avatar
VictorSanh committed
431
432
433
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
thomwolf's avatar
thomwolf committed
434
435
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)
thomwolf's avatar
thomwolf committed
436

VictorSanh's avatar
WIP  
VictorSanh committed
437
438
    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")
thomwolf's avatar
thomwolf committed
439

VictorSanh's avatar
WIP  
VictorSanh committed
440
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
thomwolf's avatar
thomwolf committed
441
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
VictorSanh's avatar
WIP  
VictorSanh committed
442
443
444
    os.makedirs(args.output_dir, exist_ok=True)

    task_name = args.task_name.lower()
thomwolf's avatar
thomwolf committed
445

VictorSanh's avatar
WIP  
VictorSanh committed
446
447
448
449
    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
450
    num_labels = num_labels_task[task_name]
VictorSanh's avatar
WIP  
VictorSanh committed
451
452
    label_list = processor.get_labels()

thomwolf's avatar
thomwolf committed
453
    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
thomwolf's avatar
thomwolf committed
454

VictorSanh's avatar
WIP  
VictorSanh committed
455
456
457
458
459
    train_examples = None
    num_train_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_steps = int(
460
            len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs)
thomwolf's avatar
thomwolf committed
461

thomwolf's avatar
thomwolf committed
462
    # Prepare model
463
    model = BertForSequenceClassification.from_pretrained(args.bert_model,
464
465
              cache_dir=PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(args.local_rank),
              num_labels = num_labels)
thomwolf's avatar
thomwolf committed
466
467
    if args.fp16:
        model.half()
thomwolf's avatar
thomwolf committed
468
    model.to(device)
thomwolf's avatar
thomwolf committed
469
    if args.local_rank != -1:
470
        model = DDP(model)
thomwolf's avatar
thomwolf committed
471
    elif n_gpu > 1:
472
        model = torch.nn.DataParallel(model)
thomwolf's avatar
thomwolf committed
473

thomwolf's avatar
thomwolf committed
474
    # Prepare optimizer
475
476
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
thomwolf's avatar
thomwolf committed
477
    optimizer_grouped_parameters = [
478
479
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
thomwolf's avatar
thomwolf committed
480
        ]
481
482
483
    t_total = num_train_steps
    if args.local_rank != -1:
        t_total = t_total // torch.distributed.get_world_size()
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
    if args.fp16:
        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=t_total)
thomwolf's avatar
thomwolf committed
499

thomwolf's avatar
thomwolf committed
500
    global_step = 0
VictorSanh's avatar
WIP  
VictorSanh committed
501
502
503
504
505
506
507
    if args.do_train:
        train_features = convert_examples_to_features(
            train_examples, label_list, args.max_seq_length, tokenizer)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)
508
509
510
511
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
512
513
514
515
516
517
518
519
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

        model.train()
520
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
521
522
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
523
524
525
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
526
                loss = model(input_ids, segment_ids, input_mask, label_ids)
thomwolf's avatar
thomwolf committed
527
528
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
529
530
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
531
532
533
534
535
536

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

537
                tr_loss += loss.item()
538
                nb_tr_examples += input_ids.size(0)
539
                nb_tr_steps += 1
thomwolf's avatar
thomwolf committed
540
                if (step + 1) % args.gradient_accumulation_steps == 0:
541
542
543
544
545
546
                    # modify learning rate with special warm up BERT uses
                    lr_this_step = args.learning_rate * warmup_linear(global_step/t_total, args.warmup_proportion)
                    for param_group in optimizer.param_groups:
                        param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
thomwolf's avatar
thomwolf committed
547
                    global_step += 1
thomwolf's avatar
thomwolf committed
548

549
    if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
VictorSanh's avatar
WIP  
VictorSanh committed
550
551
552
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(
            eval_examples, label_list, args.max_seq_length, tokenizer)
VictorSanh's avatar
wip  
VictorSanh committed
553
554
555
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
556
557
558
559
        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
560
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
561
562
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
563
564
565
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

        model.eval()
566
        eval_loss, eval_accuracy = 0, 0
VictorSanh's avatar
VictorSanh committed
567
        nb_eval_steps, nb_eval_examples = 0, 0
568
        for input_ids, input_mask, segment_ids, label_ids in eval_dataloader:
569
            input_ids = input_ids.to(device)
thomwolf's avatar
thomwolf committed
570
            input_mask = input_mask.to(device)
571
            segment_ids = segment_ids.to(device)
572
            label_ids = label_ids.to(device)
573

574
            with torch.no_grad():
575
576
                tmp_eval_loss = model(input_ids, segment_ids, input_mask, label_ids)
                logits = model(input_ids, segment_ids, input_mask)
thomwolf's avatar
thomwolf committed
577
578
579

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
580
581
            tmp_eval_accuracy = accuracy(logits, label_ids)

582
            eval_loss += tmp_eval_loss.mean().item()
583
            eval_accuracy += tmp_eval_accuracy
thomwolf's avatar
thomwolf committed
584

VictorSanh's avatar
VictorSanh committed
585
            nb_eval_examples += input_ids.size(0)
586
            nb_eval_steps += 1
VictorSanh's avatar
WIP  
VictorSanh committed
587

588
589
        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples
VictorSanh's avatar
WIP  
VictorSanh committed
590

591
592
593
        result = {'eval_loss': eval_loss,
                  'eval_accuracy': eval_accuracy,
                  'global_step': global_step,
594
                  'loss': tr_loss/nb_tr_steps}
VictorSanh's avatar
WIP  
VictorSanh committed
595

596
597
598
599
        model_to_save = model.module if hasattr(model, 'module') else model
        raise NotImplementedError # TODO add save of the configuration file and vocabulary file also ?
        output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
        torch.save(model_to_save, output_model_file)
VictorSanh's avatar
WIP  
VictorSanh committed
600
        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
VictorSanh's avatar
wip  
VictorSanh committed
601
602
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
VictorSanh's avatar
WIP  
VictorSanh committed
603
            for key in sorted(result.keys()):
VictorSanh's avatar
wip  
VictorSanh committed
604
                logger.info("  %s = %s", key, str(result[key]))
VictorSanh's avatar
WIP  
VictorSanh committed
605
                writer.write("%s = %s\n" % (key, str(result[key])))
606

VictorSanh's avatar
WIP  
VictorSanh committed
607
608
if __name__ == "__main__":
    main()