test_modeling_gpt2.py 38.7 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
import datetime
18
import gc
19
import math
20
21
import unittest

22
23
import pytest

24
from transformers import GPT2Config, is_torch_available
25
26
27
28
29
30
31
32
from transformers.testing_utils import (
    backend_empty_cache,
    require_flash_attn,
    require_torch,
    require_torch_gpu,
    slow,
    torch_device,
)
thomwolf's avatar
thomwolf committed
33

34
from ...generation.test_utils import GenerationTesterMixin
Yih-Dar's avatar
Yih-Dar committed
35
36
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
37
from ...test_pipeline_mixin import PipelineTesterMixin
Aymeric Augustin's avatar
Aymeric Augustin committed
38
39


40
if is_torch_available():
41
    import torch
42

43
44
    from transformers import (
        GPT2DoubleHeadsModel,
peter-sk's avatar
peter-sk committed
45
        GPT2ForQuestionAnswering,
46
        GPT2ForSequenceClassification,
47
        GPT2ForTokenClassification,
48
49
        GPT2LMHeadModel,
        GPT2Model,
50
        GPT2Tokenizer,
51
52
    )

53

54
55
56
57
58
59
60
61
62
63
64
65
66
class GPT2ModelTester:
    def __init__(
        self,
        parent,
        batch_size=14,
        seq_length=7,
        is_training=True,
        use_token_type_ids=True,
        use_input_mask=True,
        use_labels=True,
        use_mc_token_ids=True,
        vocab_size=99,
        hidden_size=32,
67
        num_hidden_layers=2,
68
69
70
71
72
73
74
75
76
77
78
79
80
81
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_token_type_ids = use_token_type_ids
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.use_mc_token_ids = use_mc_token_ids
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
103
104
105
        self.scope = None
        self.bos_token_id = vocab_size - 1
        self.eos_token_id = vocab_size - 1
106
        self.pad_token_id = vocab_size - 1
107

108
    def get_large_model_config(self):
109
        return GPT2Config.from_pretrained("openai-community/gpt2")
110

111
112
113
    def prepare_config_and_inputs(
        self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
    ):
114
115
116
117
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
118
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

136
137
138
139
140
        config = self.get_config(
            gradient_checkpointing=gradient_checkpointing,
            scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
            reorder_and_upcast_attn=reorder_and_upcast_attn,
        )
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

156
157
158
    def get_config(
        self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
    ):
159
160
161
162
163
        return GPT2Config(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
164
165
166
167
            n_inner=self.intermediate_size,
            activation_function=self.hidden_act,
            resid_pdrop=self.hidden_dropout_prob,
            attn_pdrop=self.attention_probs_dropout_prob,
168
169
170
            n_positions=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
171
            use_cache=True,
172
173
174
            bos_token_id=self.bos_token_id,
            eos_token_id=self.eos_token_id,
            pad_token_id=self.pad_token_id,
175
176
177
            gradient_checkpointing=gradient_checkpointing,
            scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
            reorder_and_upcast_attn=reorder_and_upcast_attn,
178
179
        )

180
181
182
183
184
    def get_pipeline_config(self):
        config = self.get_config()
        config.vocab_size = 300
        return config

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    def prepare_config_and_inputs_for_decoder(self):
        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

214
215
216
217
218
    def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = GPT2Model(config=config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
219
220
221
        result = model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
222

Stas Bekman's avatar
Stas Bekman committed
223
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
224
        self.parent.assertEqual(len(result.past_key_values), config.n_layer)
225
226
227
228
229
230
231

    def create_and_check_gpt2_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = GPT2Model(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
232
233
234
235
236
237
238
        outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids)
        outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
239
        output, past = outputs.to_tuple()
240
241
242
243
244
245
246
247
248

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
        next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size)

        # append to next input_ids and token_type_ids
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1)

Sylvain Gugger's avatar
Sylvain Gugger committed
249
        output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"]
Sylvain Gugger's avatar
Sylvain Gugger committed
250
251
252
        output_from_past = model(next_tokens, token_type_ids=next_token_types, past_key_values=past)[
            "last_hidden_state"
        ]
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def create_and_check_gpt2_model_attention_mask_past(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        model = GPT2Model(config=config)
        model.to(torch_device)
        model.eval()

        # create attention mask
        attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
        half_seq_length = self.seq_length // 2
        attn_mask[:, half_seq_length:] = 0

        # first forward pass
Sylvain Gugger's avatar
Sylvain Gugger committed
275
        output, past = model(input_ids, attention_mask=attn_mask).to_tuple()
276
277
278
279
280
281
282
283
284
285
286
287

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
        input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens

        # append to next input_ids and attn_mask
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        attn_mask = torch.cat(
Lysandre's avatar
Lysandre committed
288
289
            [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
            dim=1,
290
291
292
        )

        # get two different outputs
Sylvain Gugger's avatar
Sylvain Gugger committed
293
        output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
Sylvain Gugger's avatar
Sylvain Gugger committed
294
        output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"]
295
296
297
298
299
300
301
302
303

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

304
305
306
307
308
309
310
311
    def create_and_check_gpt2_model_past_large_inputs(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        model = GPT2Model(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
312
        outputs = model(input_ids, token_type_ids=token_type_ids, attention_mask=input_mask, use_cache=True)
313
314
315
316
317
318

        output, past = outputs.to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_token_types = ids_tensor([self.batch_size, 3], self.type_vocab_size)
319
        next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
320
321
322
323

        # append to next input_ids and token_type_ids
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1)
324
325
326
327
328
329
330
331
        next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)

        output_from_no_past = model(
            next_input_ids, token_type_ids=next_token_type_ids, attention_mask=next_attention_mask
        )["last_hidden_state"]
        output_from_past = model(
            next_tokens, token_type_ids=next_token_types, attention_mask=next_attention_mask, past_key_values=past
        )["last_hidden_state"]
332
333
334
335
336
337
338
339
340
341
        self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1])

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

342
343
344
345
346
    def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = GPT2LMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
347
        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
Stas Bekman's avatar
Stas Bekman committed
348
349
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
350

351
352
353
    def create_and_check_forward_and_backwards(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args, gradient_checkpointing=False
    ):
354
355
        model = GPT2LMHeadModel(config)
        model.to(torch_device)
356
357
        if gradient_checkpointing:
            model.gradient_checkpointing_enable()
358
359
360
361
362
363

        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
        result.loss.backward()

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
    def create_and_check_double_lm_head_model(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args
    ):
        model = GPT2DoubleHeadsModel(config)
        model.to(torch_device)
        model.eval()

        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()

        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "mc_token_ids": mc_token_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
            "labels": multiple_choice_inputs_ids,
        }

Sylvain Gugger's avatar
Sylvain Gugger committed
383
        result = model(**inputs)
384
        self.parent.assertEqual(result.loss.shape, ())
Stas Bekman's avatar
Stas Bekman committed
385
        self.parent.assertEqual(
386
            result.logits.shape, (self.batch_size, self.num_choices, self.seq_length, self.vocab_size)
387
        )
Stas Bekman's avatar
Stas Bekman committed
388
        self.parent.assertEqual(result.mc_logits.shape, (self.batch_size, self.num_choices))
389

peter-sk's avatar
peter-sk committed
390
391
392
393
394
395
396
397
398
399
400
    def create_and_check_gpt2_for_question_answering(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args
    ):
        config.num_labels = self.num_labels
        model = GPT2ForQuestionAnswering(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))

401
402
403
404
405
406
407
408
409
410
    def create_and_check_gpt2_for_sequence_classification(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args
    ):
        config.num_labels = self.num_labels
        model = GPT2ForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

411
412
413
414
415
416
417
418
419
420
    def create_and_check_gpt2_for_token_classification(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args
    ):
        config.num_labels = self.num_labels
        model = GPT2ForTokenClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))

421
422
423
424
425
426
427
428
    def create_and_check_gpt2_weight_initialization(self, config, *args):
        model = GPT2Model(config)
        model_std = model.config.initializer_range / math.sqrt(2 * model.config.n_layer)
        for key in model.state_dict().keys():
            if "c_proj" in key and "weight" in key:
                self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std), 0.001)
                self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0), 0.01)

429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "head_mask": head_mask,
        }

        return config, inputs_dict


453
@require_torch
454
class GPT2ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
455
    all_model_classes = (
peter-sk's avatar
peter-sk committed
456
457
458
459
460
461
462
463
        (
            GPT2Model,
            GPT2LMHeadModel,
            GPT2DoubleHeadsModel,
            GPT2ForQuestionAnswering,
            GPT2ForSequenceClassification,
            GPT2ForTokenClassification,
        )
464
465
466
467
        if is_torch_available()
        else ()
    )
    all_generative_model_classes = (GPT2LMHeadModel, GPT2DoubleHeadsModel) if is_torch_available() else ()
468
469
470
    pipeline_model_mapping = (
        {
            "feature-extraction": GPT2Model,
peter-sk's avatar
peter-sk committed
471
            "question-answering": GPT2ForQuestionAnswering,
472
473
474
475
476
477
478
479
            "text-classification": GPT2ForSequenceClassification,
            "text-generation": GPT2LMHeadModel,
            "token-classification": GPT2ForTokenClassification,
            "zero-shot": GPT2ForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )
480
    all_parallelizable_model_classes = (GPT2LMHeadModel, GPT2DoubleHeadsModel) if is_torch_available() else ()
481
    fx_compatible = True
482
    test_missing_keys = False
483
    test_model_parallel = True
484

485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
    # special case for DoubleHeads model
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class.__name__ == "GPT2DoubleHeadsModel":
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length),
                    dtype=torch.long,
                    device=torch_device,
                )
                inputs_dict["input_ids"] = inputs_dict["labels"]
                inputs_dict["token_type_ids"] = inputs_dict["labels"]
                inputs_dict["mc_token_ids"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.num_choices),
                    dtype=torch.long,
                    device=torch_device,
                )
                inputs_dict["mc_labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
        return inputs_dict

508
    def setUp(self):
509
        self.model_tester = GPT2ModelTester(self)
510
        self.config_tester = ConfigTester(self, config_class=GPT2Config, n_embd=37)
thomwolf's avatar
thomwolf committed
511

512
513
514
515
    def tearDown(self):
        super().tearDown()
        # clean-up as much as possible GPU memory occupied by PyTorch
        gc.collect()
516
        backend_empty_cache(torch_device)
517

thomwolf's avatar
thomwolf committed
518
    def test_config(self):
519
        self.config_tester.run_common_tests()
thomwolf's avatar
thomwolf committed
520

521
522
523
    def test_gpt2_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
524

525
526
527
528
529
530
531
532
    def test_gpt2_model_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_past(*config_and_inputs)

    def test_gpt2_model_att_mask_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_attention_mask_past(*config_and_inputs)

533
534
535
536
    def test_gpt2_model_past_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_past_large_inputs(*config_and_inputs)

537
538
539
540
541
542
543
    def test_gpt2_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lm_head_model(*config_and_inputs)

    def test_gpt2_double_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_double_lm_head_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
544

peter-sk's avatar
peter-sk committed
545
546
547
548
    def test_gpt2_question_answering_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_for_question_answering(*config_and_inputs)

549
550
551
552
    def test_gpt2_sequence_classification_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_for_sequence_classification(*config_and_inputs)

553
554
555
556
    def test_gpt2_token_classification_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_for_token_classification(*config_and_inputs)

557
    def test_gpt2_gradient_checkpointing(self):
558
559
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True)
560

561
562
563
564
565
566
567
568
569
570
571
572
    def test_gpt2_scale_attn_by_inverse_layer_idx(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(scale_attn_by_inverse_layer_idx=True)
        self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs)

    def test_gpt2_reorder_and_upcast_attn(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(reorder_and_upcast_attn=True)
        self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs)

    def test_gpt2_weight_initialization(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_weight_initialization(*config_and_inputs)

573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

591
592
    @slow
    def test_batch_generation(self):
593
        model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2")
594
        model.to(torch_device)
595
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
596
597
598
599
600
601
602
603
604
605
606
607
608
609

        tokenizer.padding_side = "left"

        # Define PAD Token = EOS Token = 50256
        tokenizer.pad_token = tokenizer.eos_token
        model.config.pad_token_id = model.config.eos_token_id

        # use different length sentences to test batching
        sentences = [
            "Hello, my dog is a little",
            "Today, I",
        ]

        inputs = tokenizer(sentences, return_tensors="pt", padding=True)
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
        input_ids = inputs["input_ids"].to(torch_device)
        token_type_ids = torch.cat(
            [
                input_ids.new_full((input_ids.shape[0], input_ids.shape[1] - 1), 0),
                input_ids.new_full((input_ids.shape[0], 1), 500),
            ],
            dim=-1,
        )

        outputs = model.generate(
            input_ids=input_ids,
            attention_mask=inputs["attention_mask"].to(torch_device),
        )

        outputs_tt = model.generate(
            input_ids=input_ids,
            attention_mask=inputs["attention_mask"].to(torch_device),
            token_type_ids=token_type_ids,
        )

        inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device)
        output_non_padded = model.generate(input_ids=inputs_non_padded)

        num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item()
        inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device)
        output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings)

        batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True)
        batch_out_sentence_tt = tokenizer.batch_decode(outputs_tt, skip_special_tokens=True)
        non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True)
        padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True)

        expected_output_sentence = [
            "Hello, my dog is a little bit of a mess. I'm not sure if he's going",
            "Today, I'm going to be doing a lot of research on this. I",
        ]
        self.assertListEqual(expected_output_sentence, batch_out_sentence)
        self.assertTrue(batch_out_sentence_tt != batch_out_sentence)  # token_type_ids should change output
        self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence])

    @slow
    def test_batch_generation_2heads(self):
652
        model = GPT2DoubleHeadsModel.from_pretrained("openai-community/gpt2")
653
        model.to(torch_device)
654
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677

        tokenizer.padding_side = "left"

        # This tokenizer has no pad token, so we have to set it in some way
        # Define PAD Token = EOS Token = 50256
        tokenizer.pad_token = tokenizer.eos_token
        model.config.pad_token_id = model.config.eos_token_id

        # use different length sentences to test batching
        sentences = [
            "Hello, my dog is a little",
            "Today, I",
        ]

        inputs = tokenizer(sentences, return_tensors="pt", padding=True)
        input_ids = inputs["input_ids"].to(torch_device)
        token_type_ids = torch.cat(
            [
                input_ids.new_full((input_ids.shape[0], input_ids.shape[1] - 1), 0),
                input_ids.new_full((input_ids.shape[0], 1), 500),
            ],
            dim=-1,
        )
678
679

        outputs = model.generate(
680
681
682
683
684
685
            input_ids=input_ids,
            attention_mask=inputs["attention_mask"].to(torch_device),
        )

        outputs_tt = model.generate(
            input_ids=input_ids,
686
            attention_mask=inputs["attention_mask"].to(torch_device),
687
            token_type_ids=token_type_ids,
688
689
690
691
692
693
694
695
696
697
        )

        inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device)
        output_non_padded = model.generate(input_ids=inputs_non_padded)

        num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item()
        inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device)
        output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings)

        batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True)
698
        batch_out_sentence_tt = tokenizer.batch_decode(outputs_tt, skip_special_tokens=True)
699
700
701
702
703
704
705
706
        non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True)
        padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True)

        expected_output_sentence = [
            "Hello, my dog is a little bit of a mess. I'm not sure if he's going",
            "Today, I'm going to be doing a lot of research on this. I",
        ]
        self.assertListEqual(expected_output_sentence, batch_out_sentence)
707
        self.assertTrue(batch_out_sentence_tt != batch_out_sentence)  # token_type_ids should change output
708
709
        self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence])

710
    @slow
711
    def test_model_from_pretrained(self):
712
713
714
        model_name = "openai-community/gpt2"
        model = GPT2Model.from_pretrained(model_name)
        self.assertIsNotNone(model)
715
716


717
@require_torch
718
class GPT2ModelLanguageGenerationTest(unittest.TestCase):
719
720
721
722
    def tearDown(self):
        super().tearDown()
        # clean-up as much as possible GPU memory occupied by PyTorch
        gc.collect()
723
        backend_empty_cache(torch_device)
724

725
726
727
728
729
730
731
732
    def _test_lm_generate_gpt2_helper(
        self,
        gradient_checkpointing=False,
        reorder_and_upcast_attn=False,
        scale_attn_by_inverse_layer_idx=False,
        verify_outputs=True,
    ):
        model = GPT2LMHeadModel.from_pretrained(
733
            "openai-community/gpt2",
734
735
736
737
738
739
740
741
            reorder_and_upcast_attn=reorder_and_upcast_attn,
            scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
        )
        if gradient_checkpointing:
            model.gradient_checkpointing_enable()
        else:
            model.gradient_checkpointing_disable()
        model.to(torch_device)
Matt's avatar
Matt committed
742
743
744
745
746

        # The dog
        input_ids = torch.tensor([[464, 3290]], dtype=torch.long, device=torch_device)

        # The dog was found in a field near the intersection of West and West Streets.\n\nThe dog
747
        expected_output_ids = [464, 3290, 373, 1043, 287, 257, 2214, 1474, 262, 16246, 286, 2688, 290, 2688, 27262, 13, 198, 198, 464, 3290,]  # fmt: skip
748
749
750
751
        output_ids = model.generate(input_ids, do_sample=False)
        if verify_outputs:
            self.assertListEqual(output_ids[0].tolist(), expected_output_ids)

752
753
    @slow
    def test_lm_generate_gpt2(self):
754
755
756
757
758
759
760
761
762
763
764
765
766
        self._test_lm_generate_gpt2_helper()

    @slow
    def test_lm_generate_gpt2_with_gradient_checkpointing(self):
        self._test_lm_generate_gpt2_helper(gradient_checkpointing=True)

    @slow
    def test_lm_generate_gpt2_with_reorder_and_upcast_attn(self):
        self._test_lm_generate_gpt2_helper(reorder_and_upcast_attn=True)

    @slow
    def test_lm_generate_gpt2_with_scale_attn_by_inverse_layer_idx(self):
        self._test_lm_generate_gpt2_helper(scale_attn_by_inverse_layer_idx=True, verify_outputs=False)
767
768

    @slow
769
    def test_gpt2_sample(self):
770
771
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
        model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2")
772
        model.to(torch_device)
773
774

        torch.manual_seed(0)
775
776
        tokenized = tokenizer("Today is a nice day and", return_tensors="pt", return_token_type_ids=True)
        input_ids = tokenized.input_ids.to(torch_device)
777
778
779
        output_ids = model.generate(input_ids, do_sample=True)
        output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True)

780
781
782
783
784
785
786
787
        token_type_ids = tokenized.token_type_ids.to(torch_device)
        output_seq = model.generate(input_ids=input_ids, do_sample=True, num_return_sequences=5)
        output_seq_tt = model.generate(
            input_ids=input_ids, token_type_ids=token_type_ids, do_sample=True, num_return_sequences=5
        )
        output_seq_strs = tokenizer.batch_decode(output_seq, skip_special_tokens=True)
        output_seq_tt_strs = tokenizer.batch_decode(output_seq_tt, skip_special_tokens=True)

788
789
790
791
        EXPECTED_OUTPUT_STR = (
            "Today is a nice day and if you don't know anything about the state of play during your holiday"
        )
        self.assertEqual(output_str, EXPECTED_OUTPUT_STR)
792
        self.assertTrue(
793
            all(output_seq_strs[idx] != output_seq_tt_strs[idx] for idx in range(len(output_seq_tt_strs)))
794
        )  # token_type_ids should change output
795
796
797

    @slow
    def test_gpt2_sample_max_time(self):
798
799
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
        model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2")
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
        model.to(torch_device)

        torch.manual_seed(0)
        tokenized = tokenizer("Today is a nice day and", return_tensors="pt", return_token_type_ids=True)
        input_ids = tokenized.input_ids.to(torch_device)

        MAX_TIME = 0.5

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=True, max_time=MAX_TIME, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
        self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=False, max_time=MAX_TIME, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
        self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=False, num_beams=2, max_time=MAX_TIME, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
        self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=True, num_beams=2, max_time=MAX_TIME, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
        self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=False, max_time=None, max_length=256)
        duration = datetime.datetime.now() - start
835
836
        self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
        self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))
837
838
839
840
841
842
843
844

    @slow
    def test_contrastive_search_gpt2(self):
        article = (
            "DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research "
            "laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based"
        )

845
846
        gpt2_tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2-large")
        gpt2_model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2-large").to(torch_device)
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
        input_ids = gpt2_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        outputs = gpt2_model.generate(input_ids, penalty_alpha=0.6, top_k=4, max_length=256)

        generated_text = gpt2_tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
                "DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research "
                "laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based in London, "
                "United Kingdom\n\nGoogle has a lot of data on its users and uses it to improve its products, such as "
                "Google Now, which helps users find the information they're looking for on the web. But the company "
                "is not the only one to collect data on its users. Facebook, for example, has its own facial "
                "recognition technology, as well as a database of millions of photos that it uses to personalize its "
                "News Feed.\n\nFacebook's use of data is a hot topic in the tech industry, with privacy advocates "
                "concerned about the company's ability to keep users' information private. In a blog post last "
                'year, Facebook CEO Mark Zuckerberg said his company would "do our best to be transparent about our '
                'data use and how we use it."\n\n"We have made it clear that we do not sell or share your data with '
                'third parties," Zuckerberg wrote. "If you have questions or concerns, please reach out to us at '
                'privacy@facebook.com."\n\nGoogle declined to comment on the privacy implications of its use of data, '
                "but said in a statement to The Associated Press that"
            ],
        )
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907

    @require_flash_attn
    @require_torch_gpu
    @pytest.mark.flash_attn_test
    @slow
    def test_flash_attn_2_generate_padding_left(self):
        """
        Overwritting the common test as the test is flaky on tiny models
        """
        model = GPT2LMHeadModel.from_pretrained("gpt2", torch_dtype=torch.float16).to(0)

        tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

        texts = ["hi", "Hello this is a very long sentence"]

        tokenizer.padding_side = "left"
        tokenizer.pad_token = tokenizer.eos_token

        inputs = tokenizer(texts, return_tensors="pt", padding=True).to(0)

        output_native = model.generate(**inputs, max_new_tokens=20, do_sample=False)
        output_native = tokenizer.batch_decode(output_native)

        model = GPT2LMHeadModel.from_pretrained(
            "gpt2", device_map={"": 0}, attn_implementation="flash_attention_2", torch_dtype=torch.float16
        )

        output_fa_2 = model.generate(**inputs, max_new_tokens=20, do_sample=False)
        output_fa_2 = tokenizer.batch_decode(output_fa_2)

        expected_output = [
            "<|endoftext|><|endoftext|><|endoftext|><|endoftext|><|endoftext|><|endoftext|>hi, who was born in the city of Kolkata, was a member of the Kolkata",
            "Hello this is a very long sentence. I'm sorry. I'm sorry. I'm sorry. I'm sorry. I'm sorry",
        ]

        self.assertListEqual(output_native, output_fa_2)
        self.assertListEqual(output_native, expected_output)