"...git@developer.sourcefind.cn:chenpangpang/transformers.git" did not exist on "6b78360e6d686b316360334f5109b46c39ff5ed8"
Unverified Commit 2b0c9245 authored by peter-sk's avatar peter-sk Committed by GitHub
Browse files

GPT2ForQuestionAnswering (#23030)



* first draft - gives index error in question_answering.py

* maturing

* no labels

* pipeline should know about QA

* fixing checks

* formatting

* fixed docstring

* make sure legacy code executes

* comment

* like this

---------
Co-authored-by: default avatarProf. Peter Schneider-Kamp <jps@ordbogen.com>
parent bcedd0a4
...@@ -111,6 +111,11 @@ A list of official Hugging Face and community (indicated by 🌎) resources to h ...@@ -111,6 +111,11 @@ A list of official Hugging Face and community (indicated by 🌎) resources to h
[[autodoc]] GPT2DoubleHeadsModel [[autodoc]] GPT2DoubleHeadsModel
- forward - forward
## GPT2ForQuestionAnswering
[[autodoc]] GPT2ForQuestionAnswering
- forward
## GPT2ForSequenceClassification ## GPT2ForSequenceClassification
[[autodoc]] GPT2ForSequenceClassification [[autodoc]] GPT2ForSequenceClassification
......
...@@ -31,7 +31,7 @@ The task illustrated in this tutorial is supported by the following model archit ...@@ -31,7 +31,7 @@ The task illustrated in this tutorial is supported by the following model archit
<!--This tip is automatically generated by `make fix-copies`, do not fill manually!--> <!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->
[ALBERT](../model_doc/albert), [BART](../model_doc/bart), [BERT](../model_doc/bert), [BigBird](../model_doc/big_bird), [BigBird-Pegasus](../model_doc/bigbird_pegasus), [BLOOM](../model_doc/bloom), [CamemBERT](../model_doc/camembert), [CANINE](../model_doc/canine), [ConvBERT](../model_doc/convbert), [Data2VecText](../model_doc/data2vec-text), [DeBERTa](../model_doc/deberta), [DeBERTa-v2](../model_doc/deberta-v2), [DistilBERT](../model_doc/distilbert), [ELECTRA](../model_doc/electra), [ERNIE](../model_doc/ernie), [ErnieM](../model_doc/ernie_m), [FlauBERT](../model_doc/flaubert), [FNet](../model_doc/fnet), [Funnel Transformer](../model_doc/funnel), [GPT-J](../model_doc/gptj), [I-BERT](../model_doc/ibert), [LayoutLMv2](../model_doc/layoutlmv2), [LayoutLMv3](../model_doc/layoutlmv3), [LED](../model_doc/led), [LiLT](../model_doc/lilt), [Longformer](../model_doc/longformer), [LUKE](../model_doc/luke), [LXMERT](../model_doc/lxmert), [MarkupLM](../model_doc/markuplm), [mBART](../model_doc/mbart), [MEGA](../model_doc/mega), [Megatron-BERT](../model_doc/megatron-bert), [MobileBERT](../model_doc/mobilebert), [MPNet](../model_doc/mpnet), [MVP](../model_doc/mvp), [Nezha](../model_doc/nezha), [Nyströmformer](../model_doc/nystromformer), [OPT](../model_doc/opt), [QDQBert](../model_doc/qdqbert), [Reformer](../model_doc/reformer), [RemBERT](../model_doc/rembert), [RoBERTa](../model_doc/roberta), [RoBERTa-PreLayerNorm](../model_doc/roberta-prelayernorm), [RoCBert](../model_doc/roc_bert), [RoFormer](../model_doc/roformer), [Splinter](../model_doc/splinter), [SqueezeBERT](../model_doc/squeezebert), [XLM](../model_doc/xlm), [XLM-RoBERTa](../model_doc/xlm-roberta), [XLM-RoBERTa-XL](../model_doc/xlm-roberta-xl), [XLNet](../model_doc/xlnet), [X-MOD](../model_doc/xmod), [YOSO](../model_doc/yoso) [ALBERT](../model_doc/albert), [BART](../model_doc/bart), [BERT](../model_doc/bert), [BigBird](../model_doc/big_bird), [BigBird-Pegasus](../model_doc/bigbird_pegasus), [BLOOM](../model_doc/bloom), [CamemBERT](../model_doc/camembert), [CANINE](../model_doc/canine), [ConvBERT](../model_doc/convbert), [Data2VecText](../model_doc/data2vec-text), [DeBERTa](../model_doc/deberta), [DeBERTa-v2](../model_doc/deberta-v2), [DistilBERT](../model_doc/distilbert), [ELECTRA](../model_doc/electra), [ERNIE](../model_doc/ernie), [ErnieM](../model_doc/ernie_m), [FlauBERT](../model_doc/flaubert), [FNet](../model_doc/fnet), [Funnel Transformer](../model_doc/funnel), [OpenAI GPT-2](../model_doc/gpt2), [GPT-J](../model_doc/gptj), [I-BERT](../model_doc/ibert), [LayoutLMv2](../model_doc/layoutlmv2), [LayoutLMv3](../model_doc/layoutlmv3), [LED](../model_doc/led), [LiLT](../model_doc/lilt), [Longformer](../model_doc/longformer), [LUKE](../model_doc/luke), [LXMERT](../model_doc/lxmert), [MarkupLM](../model_doc/markuplm), [mBART](../model_doc/mbart), [MEGA](../model_doc/mega), [Megatron-BERT](../model_doc/megatron-bert), [MobileBERT](../model_doc/mobilebert), [MPNet](../model_doc/mpnet), [MVP](../model_doc/mvp), [Nezha](../model_doc/nezha), [Nyströmformer](../model_doc/nystromformer), [OPT](../model_doc/opt), [QDQBert](../model_doc/qdqbert), [Reformer](../model_doc/reformer), [RemBERT](../model_doc/rembert), [RoBERTa](../model_doc/roberta), [RoBERTa-PreLayerNorm](../model_doc/roberta-prelayernorm), [RoCBert](../model_doc/roc_bert), [RoFormer](../model_doc/roformer), [Splinter](../model_doc/splinter), [SqueezeBERT](../model_doc/squeezebert), [XLM](../model_doc/xlm), [XLM-RoBERTa](../model_doc/xlm-roberta), [XLM-RoBERTa-XL](../model_doc/xlm-roberta-xl), [XLNet](../model_doc/xlnet), [X-MOD](../model_doc/xmod), [YOSO](../model_doc/yoso)
<!--End of the generated tip--> <!--End of the generated tip-->
......
...@@ -1666,6 +1666,7 @@ else: ...@@ -1666,6 +1666,7 @@ else:
[ [
"GPT2_PRETRAINED_MODEL_ARCHIVE_LIST", "GPT2_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPT2DoubleHeadsModel", "GPT2DoubleHeadsModel",
"GPT2ForQuestionAnswering",
"GPT2ForSequenceClassification", "GPT2ForSequenceClassification",
"GPT2ForTokenClassification", "GPT2ForTokenClassification",
"GPT2LMHeadModel", "GPT2LMHeadModel",
...@@ -5212,6 +5213,7 @@ if TYPE_CHECKING: ...@@ -5212,6 +5213,7 @@ if TYPE_CHECKING:
from .models.gpt2 import ( from .models.gpt2 import (
GPT2_PRETRAINED_MODEL_ARCHIVE_LIST, GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
GPT2DoubleHeadsModel, GPT2DoubleHeadsModel,
GPT2ForQuestionAnswering,
GPT2ForSequenceClassification, GPT2ForSequenceClassification,
GPT2ForTokenClassification, GPT2ForTokenClassification,
GPT2LMHeadModel, GPT2LMHeadModel,
......
...@@ -735,6 +735,7 @@ MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict( ...@@ -735,6 +735,7 @@ MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict(
("flaubert", "FlaubertForQuestionAnsweringSimple"), ("flaubert", "FlaubertForQuestionAnsweringSimple"),
("fnet", "FNetForQuestionAnswering"), ("fnet", "FNetForQuestionAnswering"),
("funnel", "FunnelForQuestionAnswering"), ("funnel", "FunnelForQuestionAnswering"),
("gpt2", "GPT2ForQuestionAnswering"),
("gptj", "GPTJForQuestionAnswering"), ("gptj", "GPTJForQuestionAnswering"),
("ibert", "IBertForQuestionAnswering"), ("ibert", "IBertForQuestionAnswering"),
("layoutlmv2", "LayoutLMv2ForQuestionAnswering"), ("layoutlmv2", "LayoutLMv2ForQuestionAnswering"),
......
...@@ -48,6 +48,7 @@ else: ...@@ -48,6 +48,7 @@ else:
_import_structure["modeling_gpt2"] = [ _import_structure["modeling_gpt2"] = [
"GPT2_PRETRAINED_MODEL_ARCHIVE_LIST", "GPT2_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPT2DoubleHeadsModel", "GPT2DoubleHeadsModel",
"GPT2ForQuestionAnswering",
"GPT2ForSequenceClassification", "GPT2ForSequenceClassification",
"GPT2ForTokenClassification", "GPT2ForTokenClassification",
"GPT2LMHeadModel", "GPT2LMHeadModel",
...@@ -109,6 +110,7 @@ if TYPE_CHECKING: ...@@ -109,6 +110,7 @@ if TYPE_CHECKING:
from .modeling_gpt2 import ( from .modeling_gpt2 import (
GPT2_PRETRAINED_MODEL_ARCHIVE_LIST, GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
GPT2DoubleHeadsModel, GPT2DoubleHeadsModel,
GPT2ForQuestionAnswering,
GPT2ForSequenceClassification, GPT2ForSequenceClassification,
GPT2ForTokenClassification, GPT2ForTokenClassification,
GPT2LMHeadModel, GPT2LMHeadModel,
......
...@@ -31,6 +31,7 @@ from ...activations import ACT2FN ...@@ -31,6 +31,7 @@ from ...activations import ACT2FN
from ...modeling_outputs import ( from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions, CausalLMOutputWithCrossAttentions,
QuestionAnsweringModelOutput,
SequenceClassifierOutputWithPast, SequenceClassifierOutputWithPast,
TokenClassifierOutput, TokenClassifierOutput,
) )
...@@ -51,6 +52,7 @@ from .configuration_gpt2 import GPT2Config ...@@ -51,6 +52,7 @@ from .configuration_gpt2 import GPT2Config
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "gpt2" _CHECKPOINT_FOR_DOC = "gpt2"
_REAL_CHECKPOINT_FOR_DOC = "gpt2"
_CONFIG_FOR_DOC = "GPT2Config" _CONFIG_FOR_DOC = "GPT2Config"
GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = [ GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = [
...@@ -1586,3 +1588,109 @@ class GPT2ForTokenClassification(GPT2PreTrainedModel): ...@@ -1586,3 +1588,109 @@ class GPT2ForTokenClassification(GPT2PreTrainedModel):
hidden_states=transformer_outputs.hidden_states, hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions, attentions=transformer_outputs.attentions,
) )
@add_start_docstrings(
"""
The GPT-2 Model transformer with a span classification head on top for extractive question-answering tasks like
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
GPT2_START_DOCSTRING,
)
class GPT2ForQuestionAnswering(GPT2PreTrainedModel):
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias", r"lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = GPT2Model(config)
self.qa_outputs = nn.Linear(config.hidden_size, 2)
# Model parallel
self.model_parallel = False
self.device_map = None
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
...@@ -3186,6 +3186,13 @@ class GPT2DoubleHeadsModel(metaclass=DummyObject): ...@@ -3186,6 +3186,13 @@ class GPT2DoubleHeadsModel(metaclass=DummyObject):
requires_backends(self, ["torch"]) requires_backends(self, ["torch"])
class GPT2ForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPT2ForSequenceClassification(metaclass=DummyObject): class GPT2ForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"] _backends = ["torch"]
......
...@@ -33,6 +33,7 @@ if is_torch_available(): ...@@ -33,6 +33,7 @@ if is_torch_available():
from transformers import ( from transformers import (
GPT2_PRETRAINED_MODEL_ARCHIVE_LIST, GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
GPT2DoubleHeadsModel, GPT2DoubleHeadsModel,
GPT2ForQuestionAnswering,
GPT2ForSequenceClassification, GPT2ForSequenceClassification,
GPT2ForTokenClassification, GPT2ForTokenClassification,
GPT2LMHeadModel, GPT2LMHeadModel,
...@@ -377,6 +378,17 @@ class GPT2ModelTester: ...@@ -377,6 +378,17 @@ class GPT2ModelTester:
) )
self.parent.assertEqual(result.mc_logits.shape, (self.batch_size, self.num_choices)) self.parent.assertEqual(result.mc_logits.shape, (self.batch_size, self.num_choices))
def create_and_check_gpt2_for_question_answering(
self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args
):
config.num_labels = self.num_labels
model = GPT2ForQuestionAnswering(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def create_and_check_gpt2_for_sequence_classification( def create_and_check_gpt2_for_sequence_classification(
self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args
): ):
...@@ -432,7 +444,14 @@ class GPT2ModelTester: ...@@ -432,7 +444,14 @@ class GPT2ModelTester:
@require_torch @require_torch
class GPT2ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): class GPT2ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = ( all_model_classes = (
(GPT2Model, GPT2LMHeadModel, GPT2DoubleHeadsModel, GPT2ForSequenceClassification, GPT2ForTokenClassification) (
GPT2Model,
GPT2LMHeadModel,
GPT2DoubleHeadsModel,
GPT2ForQuestionAnswering,
GPT2ForSequenceClassification,
GPT2ForTokenClassification,
)
if is_torch_available() if is_torch_available()
else () else ()
) )
...@@ -440,6 +459,7 @@ class GPT2ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin ...@@ -440,6 +459,7 @@ class GPT2ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin
pipeline_model_mapping = ( pipeline_model_mapping = (
{ {
"feature-extraction": GPT2Model, "feature-extraction": GPT2Model,
"question-answering": GPT2ForQuestionAnswering,
"text-classification": GPT2ForSequenceClassification, "text-classification": GPT2ForSequenceClassification,
"text-generation": GPT2LMHeadModel, "text-generation": GPT2LMHeadModel,
"token-classification": GPT2ForTokenClassification, "token-classification": GPT2ForTokenClassification,
...@@ -507,6 +527,10 @@ class GPT2ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin ...@@ -507,6 +527,10 @@ class GPT2ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin
config_and_inputs = self.model_tester.prepare_config_and_inputs() config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*config_and_inputs) self.model_tester.create_and_check_double_lm_head_model(*config_and_inputs)
def test_gpt2_question_answering_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_gpt2_for_question_answering(*config_and_inputs)
def test_gpt2_sequence_classification_model(self): def test_gpt2_sequence_classification_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs() config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_gpt2_for_sequence_classification(*config_and_inputs) self.model_tester.create_and_check_gpt2_for_sequence_classification(*config_and_inputs)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment