test_pipelines_text_generation.py 14.7 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
import unittest

17
18
19
20
21
22
23
from transformers import (
    MODEL_FOR_CAUSAL_LM_MAPPING,
    TF_MODEL_FOR_CAUSAL_LM_MAPPING,
    TextGenerationPipeline,
    logging,
    pipeline,
)
24
from transformers.testing_utils import (
25
    CaptureLogger,
26
    is_pipeline_test,
27
28
29
    require_accelerate,
    require_tf,
    require_torch,
30
    require_torch_accelerator,
31
    require_torch_gpu,
32
    require_torch_or_tf,
33
    torch_device,
34
)
35

36
from .test_pipelines_common import ANY
37
38


39
@is_pipeline_test
40
@require_torch_or_tf
41
class TextGenerationPipelineTests(unittest.TestCase):
42
43
    model_mapping = MODEL_FOR_CAUSAL_LM_MAPPING
    tf_model_mapping = TF_MODEL_FOR_CAUSAL_LM_MAPPING
44

45
46
47
48
49
50
51
52
53
    @require_torch
    def test_small_model_pt(self):
        text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="pt")
        # Using `do_sample=False` to force deterministic output
        outputs = text_generator("This is a test", do_sample=False)
        self.assertEqual(
            outputs,
            [
                {
Sylvain Gugger's avatar
Sylvain Gugger committed
54
55
56
57
                    "generated_text": (
                        "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope."
                        " oscope. FiliFili@@"
                    )
58
59
60
                }
            ],
        )
61

62
63
64
65
66
67
        outputs = text_generator(["This is a test", "This is a second test"])
        self.assertEqual(
            outputs,
            [
                [
                    {
Sylvain Gugger's avatar
Sylvain Gugger committed
68
69
70
71
                        "generated_text": (
                            "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope."
                            " oscope. FiliFili@@"
                        )
72
73
74
75
                    }
                ],
                [
                    {
Sylvain Gugger's avatar
Sylvain Gugger committed
76
77
78
79
                        "generated_text": (
                            "This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy"
                            " oscope. oscope. FiliFili@@"
                        )
80
81
                    }
                ],
82
83
84
85
86
87
88
89
90
91
92
            ],
        )

        outputs = text_generator("This is a test", do_sample=True, num_return_sequences=2, return_tensors=True)
        self.assertEqual(
            outputs,
            [
                {"generated_token_ids": ANY(list)},
                {"generated_token_ids": ANY(list)},
            ],
        )
93
94
95

        ## -- test tokenizer_kwargs
        test_str = "testing tokenizer kwargs. using truncation must result in a different generation."
96
        input_len = len(text_generator.tokenizer(test_str)["input_ids"])
97
        output_str, output_str_with_truncation = (
98
            text_generator(test_str, do_sample=False, return_full_text=False, min_new_tokens=1)[0]["generated_text"],
99
100
101
102
            text_generator(
                test_str,
                do_sample=False,
                return_full_text=False,
103
                min_new_tokens=1,
104
                truncation=True,
105
                max_length=input_len + 1,
106
107
            )[0]["generated_text"],
        )
108
        assert output_str != output_str_with_truncation  # results must be different because one had truncation
109
110

        # -- what is the point of this test? padding is hardcoded False in the pipeline anyway
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
        text_generator.tokenizer.pad_token_id = text_generator.model.config.eos_token_id
        text_generator.tokenizer.pad_token = "<pad>"
        outputs = text_generator(
            ["This is a test", "This is a second test"],
            do_sample=True,
            num_return_sequences=2,
            batch_size=2,
            return_tensors=True,
        )
        self.assertEqual(
            outputs,
            [
                [
                    {"generated_token_ids": ANY(list)},
                    {"generated_token_ids": ANY(list)},
                ],
                [
                    {"generated_token_ids": ANY(list)},
                    {"generated_token_ids": ANY(list)},
                ],
131
132
            ],
        )
133

134
135
136
    @require_tf
    def test_small_model_tf(self):
        text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="tf")
137

138
139
140
141
142
143
        # Using `do_sample=False` to force deterministic output
        outputs = text_generator("This is a test", do_sample=False)
        self.assertEqual(
            outputs,
            [
                {
Sylvain Gugger's avatar
Sylvain Gugger committed
144
145
146
147
                    "generated_text": (
                        "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵"
                        " please,"
                    )
148
149
150
                }
            ],
        )
151

152
153
154
155
156
157
        outputs = text_generator(["This is a test", "This is a second test"], do_sample=False)
        self.assertEqual(
            outputs,
            [
                [
                    {
Sylvain Gugger's avatar
Sylvain Gugger committed
158
159
160
161
                        "generated_text": (
                            "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵"
                            " please,"
                        )
162
163
164
165
                    }
                ],
                [
                    {
Sylvain Gugger's avatar
Sylvain Gugger committed
166
167
168
169
                        "generated_text": (
                            "This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes"
                            " Cannes 閲閲Cannes Cannes Cannes 攵 please,"
                        )
170
171
172
173
                    }
                ],
            ],
        )
174

175
    def get_test_pipeline(self, model, tokenizer, processor):
176
        text_generator = TextGenerationPipeline(model=model, tokenizer=tokenizer)
177
178
        return text_generator, ["This is a test", "Another test"]

179
180
181
182
183
184
185
186
187
188
189
190
    def test_stop_sequence_stopping_criteria(self):
        prompt = """Hello I believe in"""
        text_generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-gpt2")
        output = text_generator(prompt)
        self.assertEqual(
            output,
            [{"generated_text": "Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"}],
        )

        output = text_generator(prompt, stop_sequence=" fe")
        self.assertEqual(output, [{"generated_text": "Hello I believe in fe"}])

191
192
193
194
    def run_pipeline_test(self, text_generator, _):
        model = text_generator.model
        tokenizer = text_generator.tokenizer

195
        outputs = text_generator("This is a test")
196
197
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
        self.assertTrue(outputs[0]["generated_text"].startswith("This is a test"))
198
199

        outputs = text_generator("This is a test", return_full_text=False)
200
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
201
202
        self.assertNotIn("This is a test", outputs[0]["generated_text"])

203
        text_generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer, return_full_text=False)
204
        outputs = text_generator("This is a test")
205
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
206
207
208
        self.assertNotIn("This is a test", outputs[0]["generated_text"])

        outputs = text_generator("This is a test", return_full_text=True)
209
210
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
        self.assertTrue(outputs[0]["generated_text"].startswith("This is a test"))
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
        outputs = text_generator(["This is great !", "Something else"], num_return_sequences=2, do_sample=True)
        self.assertEqual(
            outputs,
            [
                [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
                [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
            ],
        )

        if text_generator.tokenizer.pad_token is not None:
            outputs = text_generator(
                ["This is great !", "Something else"], num_return_sequences=2, batch_size=2, do_sample=True
            )
            self.assertEqual(
                outputs,
                [
                    [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
                    [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
                ],
            )

233
234
        with self.assertRaises(ValueError):
            outputs = text_generator("test", return_full_text=True, return_text=True)
Nicolas Patry's avatar
Nicolas Patry committed
235
236
237
238
        with self.assertRaises(ValueError):
            outputs = text_generator("test", return_full_text=True, return_tensors=True)
        with self.assertRaises(ValueError):
            outputs = text_generator("test", return_text=True, return_tensors=True)
239

240
241
242
243
        # Empty prompt is slighly special
        # it requires BOS token to exist.
        # Special case for Pegasus which will always append EOS so will
        # work even without BOS.
244
245
246
247
248
        if (
            text_generator.tokenizer.bos_token_id is not None
            or "Pegasus" in tokenizer.__class__.__name__
            or "Git" in model.__class__.__name__
        ):
249
250
251
252
253
            outputs = text_generator("")
            self.assertEqual(outputs, [{"generated_text": ANY(str)}])
        else:
            with self.assertRaises((ValueError, AssertionError)):
                outputs = text_generator("")
254
255
256
257
258
259
260
261

        if text_generator.framework == "tf":
            # TF generation does not support max_new_tokens, and it's impossible
            # to control long generation with only max_length without
            # fancy calculation, dismissing tests for now.
            return
        # We don't care about infinite range models.
        # They already work.
Suraj Patil's avatar
Suraj Patil committed
262
        # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly.
263
264
265
266
267
268
        EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS = [
            "RwkvForCausalLM",
            "XGLMForCausalLM",
            "GPTNeoXForCausalLM",
            "FuyuForCausalLM",
        ]
269
270
271
272
        if (
            tokenizer.model_max_length < 10000
            and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS
        ):
273
274
275
276
277
278
279
280
281
282
283
284
            # Handling of large generations
            with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError)):
                text_generator("This is a test" * 500, max_new_tokens=20)

            outputs = text_generator("This is a test" * 500, handle_long_generation="hole", max_new_tokens=20)
            # Hole strategy cannot work
            with self.assertRaises(ValueError):
                text_generator(
                    "This is a test" * 500,
                    handle_long_generation="hole",
                    max_new_tokens=tokenizer.model_max_length + 10,
                )
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

    @require_torch
    @require_accelerate
    @require_torch_gpu
    def test_small_model_pt_bloom_accelerate(self):
        import torch

        # Classic `model_kwargs`
        pipe = pipeline(
            model="hf-internal-testing/tiny-random-bloom",
            model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloat16},
        )
        self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16)
        out = pipe("This is a test")
        self.assertEqual(
            out,
            [
                {
                    "generated_text": (
                        "This is a test test test test test test test test test test test test test test test test"
                        " test"
                    )
                }
            ],
        )

        # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.)
        pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto", torch_dtype=torch.bfloat16)
        self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16)
        out = pipe("This is a test")
        self.assertEqual(
            out,
            [
                {
                    "generated_text": (
                        "This is a test test test test test test test test test test test test test test test test"
                        " test"
                    )
                }
            ],
        )

327
        # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602
328
        pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto")
329
        self.assertEqual(pipe.model.lm_head.weight.dtype, torch.float32)
330
331
332
333
334
335
336
337
338
339
340
341
        out = pipe("This is a test")
        self.assertEqual(
            out,
            [
                {
                    "generated_text": (
                        "This is a test test test test test test test test test test test test test test test test"
                        " test"
                    )
                }
            ],
        )
342
343

    @require_torch
344
    @require_torch_accelerator
345
346
347
    def test_small_model_fp16(self):
        import torch

348
349
350
351
352
        pipe = pipeline(
            model="hf-internal-testing/tiny-random-bloom",
            device=torch_device,
            torch_dtype=torch.float16,
        )
353
        pipe("This is a test")
354
355
356

    @require_torch
    @require_accelerate
357
    @require_torch_accelerator
358
359
360
361
362
    def test_pipeline_accelerate_top_p(self):
        import torch

        pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto", torch_dtype=torch.float16)
        pipe("This is a test", do_sample=True, top_p=0.5)
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

    def test_pipeline_length_setting_warning(self):
        prompt = """Hello world"""
        text_generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-gpt2")
        if text_generator.model.framework == "tf":
            logger = logging.get_logger("transformers.generation.tf_utils")
        else:
            logger = logging.get_logger("transformers.generation.utils")
        logger_msg = "Both `max_new_tokens`"  # The beggining of the message to be checked in this test

        # Both are set by the user -> log warning
        with CaptureLogger(logger) as cl:
            _ = text_generator(prompt, max_length=10, max_new_tokens=1)
        self.assertIn(logger_msg, cl.out)

        # The user only sets one -> no warning
        with CaptureLogger(logger) as cl:
            _ = text_generator(prompt, max_new_tokens=1)
        self.assertNotIn(logger_msg, cl.out)

        with CaptureLogger(logger) as cl:
            _ = text_generator(prompt, max_length=10)
        self.assertNotIn(logger_msg, cl.out)