test_pipelines_text_generation.py 12.6 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
import unittest

17
from transformers import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, pipeline
18
from transformers.testing_utils import (
19
    is_pipeline_test,
20
21
22
23
    require_accelerate,
    require_tf,
    require_torch,
    require_torch_gpu,
24
    require_torch_or_tf,
25
)
26

27
from .test_pipelines_common import ANY
28
29


30
@is_pipeline_test
31
@require_torch_or_tf
32
class TextGenerationPipelineTests(unittest.TestCase):
33
34
    model_mapping = MODEL_FOR_CAUSAL_LM_MAPPING
    tf_model_mapping = TF_MODEL_FOR_CAUSAL_LM_MAPPING
35

36
37
38
39
40
41
42
43
44
    @require_torch
    def test_small_model_pt(self):
        text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="pt")
        # Using `do_sample=False` to force deterministic output
        outputs = text_generator("This is a test", do_sample=False)
        self.assertEqual(
            outputs,
            [
                {
Sylvain Gugger's avatar
Sylvain Gugger committed
45
46
47
48
                    "generated_text": (
                        "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope."
                        " oscope. FiliFili@@"
                    )
49
50
51
                }
            ],
        )
52

53
54
55
56
57
58
        outputs = text_generator(["This is a test", "This is a second test"])
        self.assertEqual(
            outputs,
            [
                [
                    {
Sylvain Gugger's avatar
Sylvain Gugger committed
59
60
61
62
                        "generated_text": (
                            "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope."
                            " oscope. FiliFili@@"
                        )
63
64
65
66
                    }
                ],
                [
                    {
Sylvain Gugger's avatar
Sylvain Gugger committed
67
68
69
70
                        "generated_text": (
                            "This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy"
                            " oscope. oscope. FiliFili@@"
                        )
71
72
                    }
                ],
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
            ],
        )

        outputs = text_generator("This is a test", do_sample=True, num_return_sequences=2, return_tensors=True)
        self.assertEqual(
            outputs,
            [
                {"generated_token_ids": ANY(list)},
                {"generated_token_ids": ANY(list)},
            ],
        )
        text_generator.tokenizer.pad_token_id = text_generator.model.config.eos_token_id
        text_generator.tokenizer.pad_token = "<pad>"
        outputs = text_generator(
            ["This is a test", "This is a second test"],
            do_sample=True,
            num_return_sequences=2,
            batch_size=2,
            return_tensors=True,
        )
        self.assertEqual(
            outputs,
            [
                [
                    {"generated_token_ids": ANY(list)},
                    {"generated_token_ids": ANY(list)},
                ],
                [
                    {"generated_token_ids": ANY(list)},
                    {"generated_token_ids": ANY(list)},
                ],
104
105
            ],
        )
106

107
108
109
    @require_tf
    def test_small_model_tf(self):
        text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="tf")
110

111
112
113
114
115
116
        # Using `do_sample=False` to force deterministic output
        outputs = text_generator("This is a test", do_sample=False)
        self.assertEqual(
            outputs,
            [
                {
Sylvain Gugger's avatar
Sylvain Gugger committed
117
118
119
120
                    "generated_text": (
                        "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵"
                        " please,"
                    )
121
122
123
                }
            ],
        )
124

125
126
127
128
129
130
        outputs = text_generator(["This is a test", "This is a second test"], do_sample=False)
        self.assertEqual(
            outputs,
            [
                [
                    {
Sylvain Gugger's avatar
Sylvain Gugger committed
131
132
133
134
                        "generated_text": (
                            "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵"
                            " please,"
                        )
135
136
137
138
                    }
                ],
                [
                    {
Sylvain Gugger's avatar
Sylvain Gugger committed
139
140
141
142
                        "generated_text": (
                            "This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes"
                            " Cannes 閲閲Cannes Cannes Cannes 攵 please,"
                        )
143
144
145
146
                    }
                ],
            ],
        )
147

148
    def get_test_pipeline(self, model, tokenizer, processor):
149
        text_generator = TextGenerationPipeline(model=model, tokenizer=tokenizer)
150
151
        return text_generator, ["This is a test", "Another test"]

152
153
154
155
156
157
158
159
160
161
162
163
    def test_stop_sequence_stopping_criteria(self):
        prompt = """Hello I believe in"""
        text_generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-gpt2")
        output = text_generator(prompt)
        self.assertEqual(
            output,
            [{"generated_text": "Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"}],
        )

        output = text_generator(prompt, stop_sequence=" fe")
        self.assertEqual(output, [{"generated_text": "Hello I believe in fe"}])

164
165
166
167
    def run_pipeline_test(self, text_generator, _):
        model = text_generator.model
        tokenizer = text_generator.tokenizer

168
        outputs = text_generator("This is a test")
169
170
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
        self.assertTrue(outputs[0]["generated_text"].startswith("This is a test"))
171
172

        outputs = text_generator("This is a test", return_full_text=False)
173
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
174
175
        self.assertNotIn("This is a test", outputs[0]["generated_text"])

176
        text_generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer, return_full_text=False)
177
        outputs = text_generator("This is a test")
178
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
179
180
181
        self.assertNotIn("This is a test", outputs[0]["generated_text"])

        outputs = text_generator("This is a test", return_full_text=True)
182
183
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
        self.assertTrue(outputs[0]["generated_text"].startswith("This is a test"))
184

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
        outputs = text_generator(["This is great !", "Something else"], num_return_sequences=2, do_sample=True)
        self.assertEqual(
            outputs,
            [
                [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
                [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
            ],
        )

        if text_generator.tokenizer.pad_token is not None:
            outputs = text_generator(
                ["This is great !", "Something else"], num_return_sequences=2, batch_size=2, do_sample=True
            )
            self.assertEqual(
                outputs,
                [
                    [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
                    [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
                ],
            )

206
207
        with self.assertRaises(ValueError):
            outputs = text_generator("test", return_full_text=True, return_text=True)
Nicolas Patry's avatar
Nicolas Patry committed
208
209
210
211
        with self.assertRaises(ValueError):
            outputs = text_generator("test", return_full_text=True, return_tensors=True)
        with self.assertRaises(ValueError):
            outputs = text_generator("test", return_text=True, return_tensors=True)
212

213
214
215
216
        # Empty prompt is slighly special
        # it requires BOS token to exist.
        # Special case for Pegasus which will always append EOS so will
        # work even without BOS.
217
218
219
220
221
        if (
            text_generator.tokenizer.bos_token_id is not None
            or "Pegasus" in tokenizer.__class__.__name__
            or "Git" in model.__class__.__name__
        ):
222
223
224
225
226
            outputs = text_generator("")
            self.assertEqual(outputs, [{"generated_text": ANY(str)}])
        else:
            with self.assertRaises((ValueError, AssertionError)):
                outputs = text_generator("")
227
228
229
230
231
232
233
234

        if text_generator.framework == "tf":
            # TF generation does not support max_new_tokens, and it's impossible
            # to control long generation with only max_length without
            # fancy calculation, dismissing tests for now.
            return
        # We don't care about infinite range models.
        # They already work.
Suraj Patil's avatar
Suraj Patil committed
235
236
        # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly.
        if tokenizer.model_max_length < 10000 and "XGLM" not in tokenizer.__class__.__name__:
237
238
239
240
241
242
243
244
245
246
247
248
            # Handling of large generations
            with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError)):
                text_generator("This is a test" * 500, max_new_tokens=20)

            outputs = text_generator("This is a test" * 500, handle_long_generation="hole", max_new_tokens=20)
            # Hole strategy cannot work
            with self.assertRaises(ValueError):
                text_generator(
                    "This is a test" * 500,
                    handle_long_generation="hole",
                    max_new_tokens=tokenizer.model_max_length + 10,
                )
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

    @require_torch
    @require_accelerate
    @require_torch_gpu
    def test_small_model_pt_bloom_accelerate(self):
        import torch

        # Classic `model_kwargs`
        pipe = pipeline(
            model="hf-internal-testing/tiny-random-bloom",
            model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloat16},
        )
        self.assertEqual(pipe.model.device, torch.device(0))
        self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16)
        out = pipe("This is a test")
        self.assertEqual(
            out,
            [
                {
                    "generated_text": (
                        "This is a test test test test test test test test test test test test test test test test"
                        " test"
                    )
                }
            ],
        )

        # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.)
        pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto", torch_dtype=torch.bfloat16)
        self.assertEqual(pipe.model.device, torch.device(0))
        self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16)
        out = pipe("This is a test")
        self.assertEqual(
            out,
            [
                {
                    "generated_text": (
                        "This is a test test test test test test test test test test test test test test test test"
                        " test"
                    )
                }
            ],
        )

293
        # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602
294
295
        pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto")
        self.assertEqual(pipe.model.device, torch.device(0))
296
        self.assertEqual(pipe.model.lm_head.weight.dtype, torch.float32)
297
298
299
300
301
302
303
304
305
306
307
308
        out = pipe("This is a test")
        self.assertEqual(
            out,
            [
                {
                    "generated_text": (
                        "This is a test test test test test test test test test test test test test test test test"
                        " test"
                    )
                }
            ],
        )
309
310
311
312
313
314
315
316

    @require_torch
    @require_torch_gpu
    def test_small_model_fp16(self):
        import torch

        pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device=0, torch_dtype=torch.float16)
        pipe("This is a test")
317
318
319
320
321
322
323
324
325

    @require_torch
    @require_accelerate
    @require_torch_gpu
    def test_pipeline_accelerate_top_p(self):
        import torch

        pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto", torch_dtype=torch.float16)
        pipe("This is a test", do_sample=True, top_p=0.5)