test_pipelines_text_generation.py 13.8 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
import unittest

17
18
19
20
21
22
23
from transformers import (
    MODEL_FOR_CAUSAL_LM_MAPPING,
    TF_MODEL_FOR_CAUSAL_LM_MAPPING,
    TextGenerationPipeline,
    logging,
    pipeline,
)
24
from transformers.testing_utils import (
25
    CaptureLogger,
26
    is_pipeline_test,
27
28
29
    require_accelerate,
    require_tf,
    require_torch,
30
    require_torch_accelerator,
31
    require_torch_gpu,
32
    require_torch_or_tf,
33
    torch_device,
34
)
35

36
from .test_pipelines_common import ANY
37
38


39
@is_pipeline_test
40
@require_torch_or_tf
41
class TextGenerationPipelineTests(unittest.TestCase):
42
43
    model_mapping = MODEL_FOR_CAUSAL_LM_MAPPING
    tf_model_mapping = TF_MODEL_FOR_CAUSAL_LM_MAPPING
44

45
46
47
48
49
50
51
52
53
    @require_torch
    def test_small_model_pt(self):
        text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="pt")
        # Using `do_sample=False` to force deterministic output
        outputs = text_generator("This is a test", do_sample=False)
        self.assertEqual(
            outputs,
            [
                {
Sylvain Gugger's avatar
Sylvain Gugger committed
54
55
56
57
                    "generated_text": (
                        "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope."
                        " oscope. FiliFili@@"
                    )
58
59
60
                }
            ],
        )
61

62
63
64
65
66
67
        outputs = text_generator(["This is a test", "This is a second test"])
        self.assertEqual(
            outputs,
            [
                [
                    {
Sylvain Gugger's avatar
Sylvain Gugger committed
68
69
70
71
                        "generated_text": (
                            "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope."
                            " oscope. FiliFili@@"
                        )
72
73
74
75
                    }
                ],
                [
                    {
Sylvain Gugger's avatar
Sylvain Gugger committed
76
77
78
79
                        "generated_text": (
                            "This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy"
                            " oscope. oscope. FiliFili@@"
                        )
80
81
                    }
                ],
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
            ],
        )

        outputs = text_generator("This is a test", do_sample=True, num_return_sequences=2, return_tensors=True)
        self.assertEqual(
            outputs,
            [
                {"generated_token_ids": ANY(list)},
                {"generated_token_ids": ANY(list)},
            ],
        )
        text_generator.tokenizer.pad_token_id = text_generator.model.config.eos_token_id
        text_generator.tokenizer.pad_token = "<pad>"
        outputs = text_generator(
            ["This is a test", "This is a second test"],
            do_sample=True,
            num_return_sequences=2,
            batch_size=2,
            return_tensors=True,
        )
        self.assertEqual(
            outputs,
            [
                [
                    {"generated_token_ids": ANY(list)},
                    {"generated_token_ids": ANY(list)},
                ],
                [
                    {"generated_token_ids": ANY(list)},
                    {"generated_token_ids": ANY(list)},
                ],
113
114
            ],
        )
115

116
117
118
    @require_tf
    def test_small_model_tf(self):
        text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="tf")
119

120
121
122
123
124
125
        # Using `do_sample=False` to force deterministic output
        outputs = text_generator("This is a test", do_sample=False)
        self.assertEqual(
            outputs,
            [
                {
Sylvain Gugger's avatar
Sylvain Gugger committed
126
127
128
129
                    "generated_text": (
                        "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵"
                        " please,"
                    )
130
131
132
                }
            ],
        )
133

134
135
136
137
138
139
        outputs = text_generator(["This is a test", "This is a second test"], do_sample=False)
        self.assertEqual(
            outputs,
            [
                [
                    {
Sylvain Gugger's avatar
Sylvain Gugger committed
140
141
142
143
                        "generated_text": (
                            "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵"
                            " please,"
                        )
144
145
146
147
                    }
                ],
                [
                    {
Sylvain Gugger's avatar
Sylvain Gugger committed
148
149
150
151
                        "generated_text": (
                            "This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes"
                            " Cannes 閲閲Cannes Cannes Cannes 攵 please,"
                        )
152
153
154
155
                    }
                ],
            ],
        )
156

157
    def get_test_pipeline(self, model, tokenizer, processor):
158
        text_generator = TextGenerationPipeline(model=model, tokenizer=tokenizer)
159
160
        return text_generator, ["This is a test", "Another test"]

161
162
163
164
165
166
167
168
169
170
171
172
    def test_stop_sequence_stopping_criteria(self):
        prompt = """Hello I believe in"""
        text_generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-gpt2")
        output = text_generator(prompt)
        self.assertEqual(
            output,
            [{"generated_text": "Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"}],
        )

        output = text_generator(prompt, stop_sequence=" fe")
        self.assertEqual(output, [{"generated_text": "Hello I believe in fe"}])

173
174
175
176
    def run_pipeline_test(self, text_generator, _):
        model = text_generator.model
        tokenizer = text_generator.tokenizer

177
        outputs = text_generator("This is a test")
178
179
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
        self.assertTrue(outputs[0]["generated_text"].startswith("This is a test"))
180
181

        outputs = text_generator("This is a test", return_full_text=False)
182
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
183
184
        self.assertNotIn("This is a test", outputs[0]["generated_text"])

185
        text_generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer, return_full_text=False)
186
        outputs = text_generator("This is a test")
187
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
188
189
190
        self.assertNotIn("This is a test", outputs[0]["generated_text"])

        outputs = text_generator("This is a test", return_full_text=True)
191
192
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
        self.assertTrue(outputs[0]["generated_text"].startswith("This is a test"))
193

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
        outputs = text_generator(["This is great !", "Something else"], num_return_sequences=2, do_sample=True)
        self.assertEqual(
            outputs,
            [
                [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
                [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
            ],
        )

        if text_generator.tokenizer.pad_token is not None:
            outputs = text_generator(
                ["This is great !", "Something else"], num_return_sequences=2, batch_size=2, do_sample=True
            )
            self.assertEqual(
                outputs,
                [
                    [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
                    [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
                ],
            )

215
216
        with self.assertRaises(ValueError):
            outputs = text_generator("test", return_full_text=True, return_text=True)
Nicolas Patry's avatar
Nicolas Patry committed
217
218
219
220
        with self.assertRaises(ValueError):
            outputs = text_generator("test", return_full_text=True, return_tensors=True)
        with self.assertRaises(ValueError):
            outputs = text_generator("test", return_text=True, return_tensors=True)
221

222
223
224
225
        # Empty prompt is slighly special
        # it requires BOS token to exist.
        # Special case for Pegasus which will always append EOS so will
        # work even without BOS.
226
227
228
229
230
        if (
            text_generator.tokenizer.bos_token_id is not None
            or "Pegasus" in tokenizer.__class__.__name__
            or "Git" in model.__class__.__name__
        ):
231
232
233
234
235
            outputs = text_generator("")
            self.assertEqual(outputs, [{"generated_text": ANY(str)}])
        else:
            with self.assertRaises((ValueError, AssertionError)):
                outputs = text_generator("")
236
237
238
239
240
241
242
243

        if text_generator.framework == "tf":
            # TF generation does not support max_new_tokens, and it's impossible
            # to control long generation with only max_length without
            # fancy calculation, dismissing tests for now.
            return
        # We don't care about infinite range models.
        # They already work.
Suraj Patil's avatar
Suraj Patil committed
244
        # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly.
245
246
247
248
249
250
        EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS = [
            "RwkvForCausalLM",
            "XGLMForCausalLM",
            "GPTNeoXForCausalLM",
            "FuyuForCausalLM",
        ]
251
252
253
254
        if (
            tokenizer.model_max_length < 10000
            and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS
        ):
255
256
257
258
259
260
261
262
263
264
265
266
            # Handling of large generations
            with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError)):
                text_generator("This is a test" * 500, max_new_tokens=20)

            outputs = text_generator("This is a test" * 500, handle_long_generation="hole", max_new_tokens=20)
            # Hole strategy cannot work
            with self.assertRaises(ValueError):
                text_generator(
                    "This is a test" * 500,
                    handle_long_generation="hole",
                    max_new_tokens=tokenizer.model_max_length + 10,
                )
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

    @require_torch
    @require_accelerate
    @require_torch_gpu
    def test_small_model_pt_bloom_accelerate(self):
        import torch

        # Classic `model_kwargs`
        pipe = pipeline(
            model="hf-internal-testing/tiny-random-bloom",
            model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloat16},
        )
        self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16)
        out = pipe("This is a test")
        self.assertEqual(
            out,
            [
                {
                    "generated_text": (
                        "This is a test test test test test test test test test test test test test test test test"
                        " test"
                    )
                }
            ],
        )

        # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.)
        pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto", torch_dtype=torch.bfloat16)
        self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16)
        out = pipe("This is a test")
        self.assertEqual(
            out,
            [
                {
                    "generated_text": (
                        "This is a test test test test test test test test test test test test test test test test"
                        " test"
                    )
                }
            ],
        )

309
        # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602
310
        pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto")
311
        self.assertEqual(pipe.model.lm_head.weight.dtype, torch.float32)
312
313
314
315
316
317
318
319
320
321
322
323
        out = pipe("This is a test")
        self.assertEqual(
            out,
            [
                {
                    "generated_text": (
                        "This is a test test test test test test test test test test test test test test test test"
                        " test"
                    )
                }
            ],
        )
324
325

    @require_torch
326
    @require_torch_accelerator
327
328
329
    def test_small_model_fp16(self):
        import torch

330
331
332
333
334
        pipe = pipeline(
            model="hf-internal-testing/tiny-random-bloom",
            device=torch_device,
            torch_dtype=torch.float16,
        )
335
        pipe("This is a test")
336
337
338

    @require_torch
    @require_accelerate
339
    @require_torch_accelerator
340
341
342
343
344
    def test_pipeline_accelerate_top_p(self):
        import torch

        pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto", torch_dtype=torch.float16)
        pipe("This is a test", do_sample=True, top_p=0.5)
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

    def test_pipeline_length_setting_warning(self):
        prompt = """Hello world"""
        text_generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-gpt2")
        if text_generator.model.framework == "tf":
            logger = logging.get_logger("transformers.generation.tf_utils")
        else:
            logger = logging.get_logger("transformers.generation.utils")
        logger_msg = "Both `max_new_tokens`"  # The beggining of the message to be checked in this test

        # Both are set by the user -> log warning
        with CaptureLogger(logger) as cl:
            _ = text_generator(prompt, max_length=10, max_new_tokens=1)
        self.assertIn(logger_msg, cl.out)

        # The user only sets one -> no warning
        with CaptureLogger(logger) as cl:
            _ = text_generator(prompt, max_new_tokens=1)
        self.assertNotIn(logger_msg, cl.out)

        with CaptureLogger(logger) as cl:
            _ = text_generator(prompt, max_length=10)
        self.assertNotIn(logger_msg, cl.out)