test_trainer.py 11.8 KB
Newer Older
Julien Chaumond's avatar
Julien Chaumond committed
1
2
import unittest

Sylvain Gugger's avatar
Sylvain Gugger committed
3
import nlp
Sylvain Gugger's avatar
Sylvain Gugger committed
4
5
import numpy as np

Julien Chaumond's avatar
Julien Chaumond committed
6
from transformers import AutoTokenizer, TrainingArguments, is_torch_available
7
from transformers.testing_utils import require_torch
Julien Chaumond's avatar
Julien Chaumond committed
8
9
10
11


if is_torch_available():
    import torch
12
13
    from torch.utils.data import IterableDataset

Julien Chaumond's avatar
Julien Chaumond committed
14
15
16
17
    from transformers import (
        AutoModelForSequenceClassification,
        GlueDataset,
        GlueDataTrainingArguments,
18
19
        LineByLineTextDataset,
        Trainer,
Julien Chaumond's avatar
Julien Chaumond committed
20
21
22
23
24
25
    )


PATH_SAMPLE_TEXT = "./tests/fixtures/sample_text.txt"


Sylvain Gugger's avatar
Sylvain Gugger committed
26
27
28
29
30
31
class RegressionDataset:
    def __init__(self, a=2, b=3, length=64, seed=42):
        np.random.seed(seed)
        self.length = length
        self.x = np.random.normal(size=(length,)).astype(np.float32)
        self.y = a * self.x + b + np.random.normal(scale=0.1, size=(length,))
Julien Chaumond's avatar
Julien Chaumond committed
32

Sylvain Gugger's avatar
Sylvain Gugger committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_x": self.x[i], "label": self.y[i]}


class AlmostAccuracy:
    def __init__(self, thresh=0.25):
        self.thresh = thresh

    def __call__(self, eval_pred):
        predictions, labels = eval_pred
        true = np.abs(predictions - labels) <= self.thresh
        return {"accuracy": true.astype(np.float32).mean().item()}
48

Julien Chaumond's avatar
Julien Chaumond committed
49

50
51
52
53
54
55
56
57
58
59
60
61
62
if is_torch_available():

    class SampleIterableDataset(IterableDataset):
        def __init__(self, file_path):
            self.file_path = file_path

        def parse_file(self):
            f = open(self.file_path, "r")
            return f.readlines()

        def __iter__(self):
            return iter(self.parse_file())

Sylvain Gugger's avatar
Sylvain Gugger committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
    class RegressionModel(torch.nn.Module):
        def __init__(self, a=0, b=0):
            super().__init__()
            self.a = torch.nn.Parameter(torch.tensor(a).float())
            self.b = torch.nn.Parameter(torch.tensor(b).float())

        def forward(self, input_x=None, labels=None):
            y = input_x * self.a + self.b
            if labels is None:
                return (y,)
            loss = torch.nn.functional.mse_loss(y, labels)
            return (loss, y)

    def get_regression_trainer(a=0, b=0, train_len=64, eval_len=64, **kwargs):
        train_dataset = RegressionDataset(length=train_len)
        eval_dataset = RegressionDataset(length=eval_len)
        model = RegressionModel(a, b)
        compute_metrics = kwargs.pop("compute_metrics", None)
        data_collator = kwargs.pop("data_collator", None)
        optimizers = kwargs.pop("optimizers", (None, None))
        args = TrainingArguments("./regression", **kwargs)
        return Trainer(
            model,
            args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            compute_metrics=compute_metrics,
            optimizers=optimizers,
        )

94

Julien Chaumond's avatar
Julien Chaumond committed
95
96
@require_torch
class TrainerIntegrationTest(unittest.TestCase):
Sylvain Gugger's avatar
Sylvain Gugger committed
97
98
99
100
101
102
103
104
105
106
107
    def check_trained_model(self, model, alternate_seed=False):
        # Checks a training seeded with learning_rate = 0.1
        if alternate_seed:
            # With args.seed = 314
            self.assertTrue(torch.abs(model.a - 1.0171) < 1e-4)
            self.assertTrue(torch.abs(model.b - 1.2494) < 1e-4)
        else:
            # With default args.seed
            self.assertTrue(torch.abs(model.a - 0.6975) < 1e-4)
            self.assertTrue(torch.abs(model.b - 1.2415) < 1e-4)

Sylvain Gugger's avatar
Sylvain Gugger committed
108
109
110
111
112
113
114
115
116
117
    def setUp(self):
        # Get the default values (in case they change):
        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.per_device_train_batch_size

    def test_reproducible_training(self):
        # Checks that training worked, model trained and seed made a reproducible training.
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
Sylvain Gugger's avatar
Sylvain Gugger committed
118
        self.check_trained_model(trainer.model)
Sylvain Gugger's avatar
Sylvain Gugger committed
119
120
121
122

        # Checks that a different seed gets different (reproducible) results.
        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
Sylvain Gugger's avatar
Sylvain Gugger committed
123
        self.check_trained_model(trainer.model, alternate_seed=True)
Sylvain Gugger's avatar
Sylvain Gugger committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

    def test_number_of_steps_in_training(self):
        # Regular training has n_epochs * len(train_dl) steps
        trainer = get_regression_trainer(learning_rate=0.1)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, self.n_epochs * 64 / self.batch_size)

        # Check passing num_train_epochs works (and a float version too):
        trainer = get_regression_trainer(learning_rate=0.1, num_train_epochs=1.5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(1.5 * 64 / self.batch_size))

        # If we pass a max_steps, num_train_epochs is ignored
        trainer = get_regression_trainer(learning_rate=0.1, max_steps=10)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 10)

    def test_train_and_eval_dataloaders(self):
        trainer = get_regression_trainer(learning_rate=0.1, per_device_train_batch_size=16)
        self.assertEqual(trainer.get_train_dataloader().batch_size, 16)
        trainer = get_regression_trainer(learning_rate=0.1, per_device_eval_batch_size=16)
        self.assertEqual(trainer.get_eval_dataloader().batch_size, 16)

        # Check drop_last works
        trainer = get_regression_trainer(
            train_len=66, eval_len=74, learning_rate=0.1, per_device_train_batch_size=16, per_device_eval_batch_size=32
        )
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // 16 + 1)
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // 32 + 1)

        trainer = get_regression_trainer(
            train_len=66,
            eval_len=74,
            learning_rate=0.1,
            per_device_train_batch_size=16,
            per_device_eval_batch_size=32,
            dataloader_drop_last=True,
        )
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // 16)
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // 32)

        # Check passing a new dataset fpr evaluation wors
        new_eval_dataset = RegressionDataset(length=128)
        self.assertEqual(len(trainer.get_eval_dataloader(new_eval_dataset)), 128 // 32)

    def test_evaluate(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.y
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.y
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

    def test_predict(self):
        trainer = get_regression_trainer(a=1.5, b=2.5)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

Sylvain Gugger's avatar
Sylvain Gugger committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    def test_trainer_with_nlp(self):
        np.random.seed(42)
        x = np.random.normal(size=(64,)).astype(np.float32)
        y = 2.0 * x + 3.0 + np.random.normal(scale=0.1, size=(64,))
        train_dataset = nlp.Dataset.from_dict({"input_x": x, "label": y})

        # Base training. Should have the same results as test_reproducible_training
        model = RegressionModel()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Can return tensors.
        train_dataset.set_format(type="torch")
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Adding one column not used by the model should have no impact
        z = np.random.normal(size=(64,)).astype(np.float32)
        train_dataset = nlp.Dataset.from_dict({"input_x": x, "label": y, "extra": z})
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

    def test_custom_optimizer(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression")
        model = RegressionModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=1.0)
        lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x: 1.0)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

        self.assertTrue(torch.abs(trainer.model.a - 1.8950) < 1e-4)
        self.assertTrue(torch.abs(trainer.model.b - 2.5656) < 1e-4)
        self.assertEqual(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 1.0)

    def test_model_init(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(args=args, train_dataset=train_dataset, model_init=lambda: RegressionModel())
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results.
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results and new seed should be used.
        trainer.args.seed = 314
        trainer.train()
        self.check_trained_model(trainer.model, alternate_seed=True)

Julien Chaumond's avatar
Julien Chaumond committed
260
261
262
263
264
    def test_trainer_eval_mrpc(self):
        MODEL_ID = "bert-base-cased-finetuned-mrpc"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
        data_args = GlueDataTrainingArguments(
265
            task_name="mrpc", data_dir="./tests/fixtures/tests_samples/MRPC", overwrite_cache=True
Julien Chaumond's avatar
Julien Chaumond committed
266
        )
267
        eval_dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
Julien Chaumond's avatar
Julien Chaumond committed
268
269
270
271

        training_args = TrainingArguments(output_dir="./examples", no_cuda=True)
        trainer = Trainer(model=model, args=training_args, eval_dataset=eval_dataset)
        result = trainer.evaluate()
272
        self.assertLess(result["eval_loss"], 0.2)
Julien Chaumond's avatar
Julien Chaumond committed
273
274
275
276
277
278
279
280

    def test_trainer_eval_lm(self):
        MODEL_ID = "distilroberta-base"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        dataset = LineByLineTextDataset(
            tokenizer=tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=tokenizer.max_len_single_sentence,
        )
        self.assertEqual(len(dataset), 31)
281
282
283
284
285
286
287
288
289

    def test_trainer_iterable_dataset(self):
        MODEL_ID = "sshleifer/tiny-distilbert-base-cased"
        model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
        train_dataset = SampleIterableDataset(PATH_SAMPLE_TEXT)
        training_args = TrainingArguments(output_dir="./examples", no_cuda=True)
        trainer = Trainer(model=model, args=training_args, train_dataset=train_dataset)
        loader = trainer.get_train_dataloader()
        self.assertIsInstance(loader, torch.utils.data.DataLoader)