"llm/vscode:/vscode.git/clone" did not exist on "283948c83b5cbf74f6cf86dce4434238e64d6e1c"
test_trainer.py 6.21 KB
Newer Older
Julien Chaumond's avatar
Julien Chaumond committed
1
2
3
4
5
6
7
8
9
10
11
12
13
import unittest

from transformers import AutoTokenizer, TrainingArguments, is_torch_available

from .utils import require_torch


if is_torch_available():
    import torch
    from transformers import (
        Trainer,
        LineByLineTextDataset,
        AutoModelForSequenceClassification,
14
        default_data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
15
16
17
18
19
20
21
22
23
24
25
26
        DataCollatorForLanguageModeling,
        GlueDataset,
        GlueDataTrainingArguments,
        TextDataset,
    )


PATH_SAMPLE_TEXT = "./tests/fixtures/sample_text.txt"


@require_torch
class DataCollatorIntegrationTest(unittest.TestCase):
27
    def test_default_with_dict(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
28
        features = [{"label": i, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
29
30
31
32
33
34
35
36
37
38
39
40
41
        batch = default_data_collator(features)
        self.assertTrue(batch["labels"].equal(torch.tensor(list(range(8)))))
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))

        # With label_ids
        features = [{"label_ids": [0, 1, 2], "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue(batch["labels"].equal(torch.tensor([[0, 1, 2]] * 8)))
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))

        # Features can already be tensors
Sylvain Gugger's avatar
Sylvain Gugger committed
42
        features = [{"label": i, "inputs": torch.randint(10, [10])} for i in range(8)]
43
44
45
46
47
        batch = default_data_collator(features)
        self.assertTrue(batch["labels"].equal(torch.tensor(list(range(8)))))
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 10]))

Sylvain Gugger's avatar
Sylvain Gugger committed
48
49
50
51
52
53
54
55
56
57
58
59
    def test_default_with_no_labels(self):
        features = [{"label": None, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue("labels" not in batch)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))

        # With label_ids
        features = [{"label_ids": None, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue("labels" not in batch)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))

Julien Chaumond's avatar
Julien Chaumond committed
60
61
62
63
    def test_default_classification(self):
        MODEL_ID = "bert-base-cased-finetuned-mrpc"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        data_args = GlueDataTrainingArguments(
64
            task_name="mrpc", data_dir="./tests/fixtures/tests_samples/MRPC", overwrite_cache=True
Julien Chaumond's avatar
Julien Chaumond committed
65
        )
66
        dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
67
68
        data_collator = default_data_collator
        batch = data_collator(dataset.features)
Julien Chaumond's avatar
Julien Chaumond committed
69
70
71
72
73
74
        self.assertEqual(batch["labels"].dtype, torch.long)

    def test_default_regression(self):
        MODEL_ID = "distilroberta-base"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        data_args = GlueDataTrainingArguments(
75
            task_name="sts-b", data_dir="./tests/fixtures/tests_samples/STS-B", overwrite_cache=True
Julien Chaumond's avatar
Julien Chaumond committed
76
        )
77
        dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
78
79
        data_collator = default_data_collator
        batch = data_collator(dataset.features)
Julien Chaumond's avatar
Julien Chaumond committed
80
81
82
83
84
85
86
87
88
89
90
        self.assertEqual(batch["labels"].dtype, torch.float)

    def test_lm_tokenizer_without_padding(self):
        tokenizer = AutoTokenizer.from_pretrained("gpt2")
        data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False)
        # ^ causal lm

        dataset = LineByLineTextDataset(tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=512)
        examples = [dataset[i] for i in range(len(dataset))]
        with self.assertRaises(ValueError):
            # Expect error due to padding token missing on gpt2:
91
            data_collator(examples)
Julien Chaumond's avatar
Julien Chaumond committed
92
93
94

        dataset = TextDataset(tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=512, overwrite_cache=True)
        examples = [dataset[i] for i in range(len(dataset))]
95
        batch = data_collator(examples)
Julien Chaumond's avatar
Julien Chaumond committed
96
97
98
99
100
101
102
103
104
105
106
        self.assertIsInstance(batch, dict)
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 512)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 512)))

    def test_lm_tokenizer_with_padding(self):
        tokenizer = AutoTokenizer.from_pretrained("distilroberta-base")
        data_collator = DataCollatorForLanguageModeling(tokenizer)
        # ^ masked lm

        dataset = LineByLineTextDataset(tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=512)
        examples = [dataset[i] for i in range(len(dataset))]
107
        batch = data_collator(examples)
Julien Chaumond's avatar
Julien Chaumond committed
108
109
        self.assertIsInstance(batch, dict)
        self.assertEqual(batch["input_ids"].shape, torch.Size((31, 107)))
Sylvain Gugger's avatar
Sylvain Gugger committed
110
        self.assertEqual(batch["labels"].shape, torch.Size((31, 107)))
Julien Chaumond's avatar
Julien Chaumond committed
111
112
113

        dataset = TextDataset(tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=512, overwrite_cache=True)
        examples = [dataset[i] for i in range(len(dataset))]
114
        batch = data_collator(examples)
Julien Chaumond's avatar
Julien Chaumond committed
115
116
        self.assertIsInstance(batch, dict)
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 512)))
Sylvain Gugger's avatar
Sylvain Gugger committed
117
        self.assertEqual(batch["labels"].shape, torch.Size((2, 512)))
Julien Chaumond's avatar
Julien Chaumond committed
118
119
120
121
122
123
124
125
126


@require_torch
class TrainerIntegrationTest(unittest.TestCase):
    def test_trainer_eval_mrpc(self):
        MODEL_ID = "bert-base-cased-finetuned-mrpc"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
        data_args = GlueDataTrainingArguments(
127
            task_name="mrpc", data_dir="./tests/fixtures/tests_samples/MRPC", overwrite_cache=True
Julien Chaumond's avatar
Julien Chaumond committed
128
        )
129
        eval_dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
Julien Chaumond's avatar
Julien Chaumond committed
130
131
132
133

        training_args = TrainingArguments(output_dir="./examples", no_cuda=True)
        trainer = Trainer(model=model, args=training_args, eval_dataset=eval_dataset)
        result = trainer.evaluate()
134
        self.assertLess(result["eval_loss"], 0.2)
Julien Chaumond's avatar
Julien Chaumond committed
135
136
137
138
139
140
141
142

    def test_trainer_eval_lm(self):
        MODEL_ID = "distilroberta-base"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        dataset = LineByLineTextDataset(
            tokenizer=tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=tokenizer.max_len_single_sentence,
        )
        self.assertEqual(len(dataset), 31)