test_modeling_openai.py 9.43 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

19
from transformers import is_torch_available
thomwolf's avatar
thomwolf committed
20

21
from .test_configuration_common import ConfigTester
22
from .test_modeling_common import ModelTesterMixin, ids_tensor
23
from .utils import require_torch, slow, torch_device
Aymeric Augustin's avatar
Aymeric Augustin committed
24
25


26
if is_torch_available():
27
    import torch
28
29
30
31
32
33
34
35
    from transformers import (
        OpenAIGPTConfig,
        OpenAIGPTModel,
        OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP,
        OpenAIGPTLMHeadModel,
        OpenAIGPTDoubleHeadsModel,
    )

36

37
@require_torch
38
class OpenAIGPTModelTest(ModelTesterMixin, unittest.TestCase):
39

40
41
42
    all_model_classes = (
        (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel) if is_torch_available() else ()
    )
43
44
45
    all_generative_model_classes = (
        (OpenAIGPTLMHeadModel,) if is_torch_available() else ()
    )  # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
46
47

    class OpenAIGPTModelTester(object):
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_token_type_ids=True,
            use_labels=True,
            vocab_size=99,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            token_type_ids = None
            if self.use_token_type_ids:
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

            config = OpenAIGPTConfig(
thomwolf's avatar
thomwolf committed
110
                vocab_size=self.vocab_size,
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
                n_embd=self.hidden_size,
                n_layer=self.num_hidden_layers,
                n_head=self.num_attention_heads,
                # intermediate_size=self.intermediate_size,
                # hidden_act=self.hidden_act,
                # hidden_dropout_prob=self.hidden_dropout_prob,
                # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                n_positions=self.max_position_embeddings,
                n_ctx=self.max_position_embeddings
                # type_vocab_size=self.type_vocab_size,
                # initializer_range=self.initializer_range
            )

            head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

patrickvonplaten's avatar
patrickvonplaten committed
126
127
128
129
130
131
132
133
134
            return (
                config,
                input_ids,
                head_mask,
                token_type_ids,
                sequence_labels,
                token_labels,
                choice_labels,
            )
135
136

        def check_loss_output(self, result):
137
            self.parent.assertListEqual(list(result["loss"].size()), [])
138
139
140

        def create_and_check_openai_gpt_model(self, config, input_ids, head_mask, token_type_ids, *args):
            model = OpenAIGPTModel(config=config)
141
            model.to(torch_device)
142
143
144
145
146
147
            model.eval()

            model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
            model(input_ids, token_type_ids=token_type_ids)
            (sequence_output,) = model(input_ids)

148
            result = {"sequence_output": sequence_output}
149
            self.parent.assertListEqual(
patrickvonplaten's avatar
patrickvonplaten committed
150
                list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size],
151
            )
152
153
154

        def create_and_check_lm_head_model(self, config, input_ids, head_mask, token_type_ids, *args):
            model = OpenAIGPTLMHeadModel(config)
155
            model.to(torch_device)
156
157
158
159
            model.eval()

            loss, lm_logits = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)

160
            result = {"loss": loss, "lm_logits": lm_logits}
161

162
            self.parent.assertListEqual(list(result["loss"].size()), [])
163
            self.parent.assertListEqual(
patrickvonplaten's avatar
patrickvonplaten committed
164
                list(result["lm_logits"].size()), [self.batch_size, self.seq_length, self.vocab_size],
165
            )
166
167
168

        def create_and_check_double_lm_head_model(self, config, input_ids, head_mask, token_type_ids, *args):
            model = OpenAIGPTDoubleHeadsModel(config)
169
            model.to(torch_device)
170
171
172
173
            model.eval()

            loss, lm_logits, mc_logits = model(input_ids, token_type_ids=token_type_ids, lm_labels=input_ids)

174
            result = {"loss": loss, "lm_logits": lm_logits}
175

176
            self.parent.assertListEqual(list(result["loss"].size()), [])
177
            self.parent.assertListEqual(
patrickvonplaten's avatar
patrickvonplaten committed
178
                list(result["lm_logits"].size()), [self.batch_size, self.seq_length, self.vocab_size],
179
            )
180
181
182

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
183
184
185
186
187
188
189
190
191
            (
                config,
                input_ids,
                head_mask,
                token_type_ids,
                sequence_labels,
                token_labels,
                choice_labels,
            ) = config_and_inputs
patrickvonplaten's avatar
patrickvonplaten committed
192
193
194
195
196
            inputs_dict = {
                "input_ids": input_ids,
                "token_type_ids": token_type_ids,
                "head_mask": head_mask,
            }
197
198
199
200
201
202

            return config, inputs_dict

    def setUp(self):
        self.model_tester = OpenAIGPTModelTest.OpenAIGPTModelTester(self)
        self.config_tester = ConfigTester(self, config_class=OpenAIGPTConfig, n_embd=37)
thomwolf's avatar
thomwolf committed
203
204

    def test_config(self):
205
        self.config_tester.run_common_tests()
thomwolf's avatar
thomwolf committed
206

207
208
209
210
211
212
213
214
215
216
217
    def test_openai_gpt_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_model(*config_and_inputs)

    def test_openai_gpt_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lm_head_model(*config_and_inputs)

    def test_openai_gpt_double_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_double_lm_head_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
218

219
    @slow
220
221
    def test_model_from_pretrained(self):
        for model_name in list(OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
222
            model = OpenAIGPTModel.from_pretrained(model_name)
223
            self.assertIsNotNone(model)
224
225
226
227
228
229


class OPENAIGPTModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_openai_gpt(self):
        model = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt")
230
        model.to(torch_device)
patrickvonplaten's avatar
patrickvonplaten committed
231
        input_ids = torch.tensor([[481, 4735, 544]], dtype=torch.long, device=torch_device)  # the president is
232
233
        expected_output_ids = [
            481,
patrickvonplaten's avatar
patrickvonplaten committed
234
            4735,
235
            544,
patrickvonplaten's avatar
patrickvonplaten committed
236
237
238
239
240
241
242
243
244
245
246
            246,
            963,
            870,
            762,
            239,
            244,
            40477,
            244,
            249,
            719,
            881,
247
            487,
patrickvonplaten's avatar
patrickvonplaten committed
248
            544,
249
            240,
patrickvonplaten's avatar
patrickvonplaten committed
250
251
252
253
254
255
            244,
            603,
            481,
        ]  # the president is a very good man. " \n " i\'m sure he is, " said the

        output_ids = model.generate(input_ids, do_sample=False)
256
        self.assertListEqual(output_ids[0].tolist(), expected_output_ids)