run_qa.py 31 KB
Newer Older
1
#!/usr/bin/env python
Sylvain Gugger's avatar
Sylvain Gugger committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
17
Fine-tuning the library models for question answering using a slightly adapted version of the 馃 Trainer.
Sylvain Gugger's avatar
Sylvain Gugger committed
18
19
20
21
22
23
24
25
26
"""
# You can also adapt this script on your own question answering task. Pointers for this are left as comments.

import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional

27
import datasets
28
import evaluate
29
from datasets import load_dataset
30
31
from trainer_qa import QuestionAnsweringTrainer
from utils_qa import postprocess_qa_predictions
Sylvain Gugger's avatar
Sylvain Gugger committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45

import transformers
from transformers import (
    AutoConfig,
    AutoModelForQuestionAnswering,
    AutoTokenizer,
    DataCollatorWithPadding,
    EvalPrediction,
    HfArgumentParser,
    PreTrainedTokenizerFast,
    TrainingArguments,
    default_data_collator,
    set_seed,
)
46
from transformers.trainer_utils import get_last_checkpoint
47
from transformers.utils import check_min_version, send_example_telemetry
48
from transformers.utils.versions import require_version
Sylvain Gugger's avatar
Sylvain Gugger committed
49
50


51
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Sylvain Gugger's avatar
Sylvain Gugger committed
52
check_min_version("4.32.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
53

54
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
55

Sylvain Gugger's avatar
Sylvain Gugger committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
logger = logging.getLogger(__name__)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Path to directory to store the pretrained models downloaded from huggingface.co"},
    )
78
79
80
81
82
83
84
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
85
            "help": (
86
                "Will use the token generated when running `huggingface-cli login` (necessary to use this script "
Sylvain Gugger's avatar
Sylvain Gugger committed
87
88
                "with private models)."
            )
89
90
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
110
111
112
113
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input test data file to evaluate the perplexity on (a text file)."},
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
114
115
116
117
118
119
120
121
122
123
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_seq_length: int = field(
        default=384,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
124
125
126
127
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
128
129
130
131
132
        },
    )
    pad_to_max_length: bool = field(
        default=True,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
133
134
135
136
            "help": (
                "Whether to pad all samples to `max_seq_length`. If False, will pad the samples dynamically when"
                " batching to the maximum length in the batch (which can be faster on GPU but will be slower on TPU)."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
137
138
        },
    )
139
140
141
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
142
143
144
145
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
146
147
        },
    )
148
    max_eval_samples: Optional[int] = field(
149
150
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
151
152
153
154
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
155
156
        },
    )
157
    max_predict_samples: Optional[int] = field(
158
159
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
160
161
162
163
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
164
165
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
166
167
168
169
170
171
    version_2_with_negative: bool = field(
        default=False, metadata={"help": "If true, some of the examples do not have an answer."}
    )
    null_score_diff_threshold: float = field(
        default=0.0,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
172
173
174
175
176
            "help": (
                "The threshold used to select the null answer: if the best answer has a score that is less than "
                "the score of the null answer minus this threshold, the null answer is selected for this example. "
                "Only useful when `version_2_with_negative=True`."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
177
178
179
180
181
182
183
184
185
186
187
188
189
        },
    )
    doc_stride: int = field(
        default=128,
        metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."},
    )
    n_best_size: int = field(
        default=20,
        metadata={"help": "The total number of n-best predictions to generate when looking for an answer."},
    )
    max_answer_length: int = field(
        default=30,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
190
191
192
193
            "help": (
                "The maximum length of an answer that can be generated. This is needed because the start "
                "and end predictions are not conditioned on one another."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
194
195
196
197
        },
    )

    def __post_init__(self):
198
199
200
201
202
203
204
        if (
            self.dataset_name is None
            and self.train_file is None
            and self.validation_file is None
            and self.test_file is None
        ):
            raise ValueError("Need either a dataset name or a training/validation file/test_file.")
Sylvain Gugger's avatar
Sylvain Gugger committed
205
206
207
208
209
210
211
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
212
213
214
            if self.test_file is not None:
                extension = self.test_file.split(".")[-1]
                assert extension in ["csv", "json"], "`test_file` should be a csv or a json file."
Sylvain Gugger's avatar
Sylvain Gugger committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

230
231
232
233
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_qa", model_args, data_args)

Sylvain Gugger's avatar
Sylvain Gugger committed
234
235
    # Setup logging
    logging.basicConfig(
236
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
Sylvain Gugger's avatar
Sylvain Gugger committed
237
        datefmt="%m/%d/%Y %H:%M:%S",
238
        handlers=[logging.StreamHandler(sys.stdout)],
Sylvain Gugger's avatar
Sylvain Gugger committed
239
    )
240

241
242
243
244
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

245
246
247
248
249
250
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
Sylvain Gugger's avatar
Sylvain Gugger committed
251
252
253
254

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
255
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
Sylvain Gugger's avatar
Sylvain Gugger committed
256
    )
257
    logger.info(f"Training/evaluation parameters {training_args}")
Sylvain Gugger's avatar
Sylvain Gugger committed
258

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
288
        raw_datasets = load_dataset(
289
290
291
292
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
293
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
294
295
296
297
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
298
299
            extension = data_args.train_file.split(".")[-1]

Sylvain Gugger's avatar
Sylvain Gugger committed
300
301
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
302
            extension = data_args.validation_file.split(".")[-1]
303
304
305
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
306
307
308
309
310
311
312
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            field="data",
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
313
314
315
316
317
318
319
320
321
322
323
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
324
325
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
326
327
328
329
330
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=True,
331
332
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
333
334
335
336
337
338
    )
    model = AutoModelForQuestionAnswering.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
339
340
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
341
342
343
344
345
    )

    # Tokenizer check: this script requires a fast tokenizer.
    if not isinstance(tokenizer, PreTrainedTokenizerFast):
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
346
347
348
            "This example script only works for models that have a fast tokenizer. Checkout the big table of models at"
            " https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet"
            " this requirement"
Sylvain Gugger's avatar
Sylvain Gugger committed
349
350
351
352
353
        )

    # Preprocessing the datasets.
    # Preprocessing is slighlty different for training and evaluation.
    if training_args.do_train:
354
        column_names = raw_datasets["train"].column_names
355
    elif training_args.do_eval:
356
        column_names = raw_datasets["validation"].column_names
357
    else:
358
        column_names = raw_datasets["test"].column_names
Sylvain Gugger's avatar
Sylvain Gugger committed
359
360
361
362
363
364
365
    question_column_name = "question" if "question" in column_names else column_names[0]
    context_column_name = "context" if "context" in column_names else column_names[1]
    answer_column_name = "answers" if "answers" in column_names else column_names[2]

    # Padding side determines if we do (question|context) or (context|question).
    pad_on_right = tokenizer.padding_side == "right"

366
    if data_args.max_seq_length > tokenizer.model_max_length:
367
        logger.warning(
368
369
370
371
372
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

Sylvain Gugger's avatar
Sylvain Gugger committed
373
374
    # Training preprocessing
    def prepare_train_features(examples):
375
376
377
378
379
        # Some of the questions have lots of whitespace on the left, which is not useful and will make the
        # truncation of the context fail (the tokenized question will take a lots of space). So we remove that
        # left whitespace
        examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]]

Sylvain Gugger's avatar
Sylvain Gugger committed
380
381
382
383
384
385
386
        # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
        # in one example possible giving several features when a context is long, each of those features having a
        # context that overlaps a bit the context of the previous feature.
        tokenized_examples = tokenizer(
            examples[question_column_name if pad_on_right else context_column_name],
            examples[context_column_name if pad_on_right else question_column_name],
            truncation="only_second" if pad_on_right else "only_first",
387
            max_length=max_seq_length,
Sylvain Gugger's avatar
Sylvain Gugger committed
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
            stride=data_args.doc_stride,
            return_overflowing_tokens=True,
            return_offsets_mapping=True,
            padding="max_length" if data_args.pad_to_max_length else False,
        )

        # Since one example might give us several features if it has a long context, we need a map from a feature to
        # its corresponding example. This key gives us just that.
        sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
        # The offset mappings will give us a map from token to character position in the original context. This will
        # help us compute the start_positions and end_positions.
        offset_mapping = tokenized_examples.pop("offset_mapping")

        # Let's label those examples!
        tokenized_examples["start_positions"] = []
        tokenized_examples["end_positions"] = []

        for i, offsets in enumerate(offset_mapping):
            # We will label impossible answers with the index of the CLS token.
            input_ids = tokenized_examples["input_ids"][i]
            cls_index = input_ids.index(tokenizer.cls_token_id)

            # Grab the sequence corresponding to that example (to know what is the context and what is the question).
            sequence_ids = tokenized_examples.sequence_ids(i)

            # One example can give several spans, this is the index of the example containing this span of text.
            sample_index = sample_mapping[i]
            answers = examples[answer_column_name][sample_index]
            # If no answers are given, set the cls_index as answer.
            if len(answers["answer_start"]) == 0:
                tokenized_examples["start_positions"].append(cls_index)
                tokenized_examples["end_positions"].append(cls_index)
            else:
                # Start/end character index of the answer in the text.
                start_char = answers["answer_start"][0]
                end_char = start_char + len(answers["text"][0])

                # Start token index of the current span in the text.
                token_start_index = 0
                while sequence_ids[token_start_index] != (1 if pad_on_right else 0):
                    token_start_index += 1

                # End token index of the current span in the text.
                token_end_index = len(input_ids) - 1
                while sequence_ids[token_end_index] != (1 if pad_on_right else 0):
                    token_end_index -= 1

                # Detect if the answer is out of the span (in which case this feature is labeled with the CLS index).
                if not (offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char):
                    tokenized_examples["start_positions"].append(cls_index)
                    tokenized_examples["end_positions"].append(cls_index)
                else:
                    # Otherwise move the token_start_index and token_end_index to the two ends of the answer.
                    # Note: we could go after the last offset if the answer is the last word (edge case).
                    while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char:
                        token_start_index += 1
                    tokenized_examples["start_positions"].append(token_start_index - 1)
                    while offsets[token_end_index][1] >= end_char:
                        token_end_index -= 1
                    tokenized_examples["end_positions"].append(token_end_index + 1)

        return tokenized_examples

    if training_args.do_train:
452
        if "train" not in raw_datasets:
453
            raise ValueError("--do_train requires a train dataset")
454
        train_dataset = raw_datasets["train"]
455
        if data_args.max_train_samples is not None:
Akul Agrawal's avatar
Akul Agrawal committed
456
            # We will select sample from whole data if argument is specified
457
458
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
459
        # Create train feature from dataset
460
461
462
463
464
465
466
467
468
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                prepare_train_features,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
469
470
        if data_args.max_train_samples is not None:
            # Number of samples might increase during Feature Creation, We select only specified max samples
471
472
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
Sylvain Gugger's avatar
Sylvain Gugger committed
473
474
475

    # Validation preprocessing
    def prepare_validation_features(examples):
476
477
478
479
480
        # Some of the questions have lots of whitespace on the left, which is not useful and will make the
        # truncation of the context fail (the tokenized question will take a lots of space). So we remove that
        # left whitespace
        examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]]

Sylvain Gugger's avatar
Sylvain Gugger committed
481
482
483
484
485
486
487
        # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
        # in one example possible giving several features when a context is long, each of those features having a
        # context that overlaps a bit the context of the previous feature.
        tokenized_examples = tokenizer(
            examples[question_column_name if pad_on_right else context_column_name],
            examples[context_column_name if pad_on_right else question_column_name],
            truncation="only_second" if pad_on_right else "only_first",
488
            max_length=max_seq_length,
Sylvain Gugger's avatar
Sylvain Gugger committed
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
            stride=data_args.doc_stride,
            return_overflowing_tokens=True,
            return_offsets_mapping=True,
            padding="max_length" if data_args.pad_to_max_length else False,
        )

        # Since one example might give us several features if it has a long context, we need a map from a feature to
        # its corresponding example. This key gives us just that.
        sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")

        # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
        # corresponding example_id and we will store the offset mappings.
        tokenized_examples["example_id"] = []

        for i in range(len(tokenized_examples["input_ids"])):
            # Grab the sequence corresponding to that example (to know what is the context and what is the question).
            sequence_ids = tokenized_examples.sequence_ids(i)
            context_index = 1 if pad_on_right else 0

            # One example can give several spans, this is the index of the example containing this span of text.
            sample_index = sample_mapping[i]
            tokenized_examples["example_id"].append(examples["id"][sample_index])

            # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
            # position is part of the context or not.
            tokenized_examples["offset_mapping"][i] = [
                (o if sequence_ids[k] == context_index else None)
                for k, o in enumerate(tokenized_examples["offset_mapping"][i])
            ]

        return tokenized_examples

    if training_args.do_eval:
522
        if "validation" not in raw_datasets:
523
            raise ValueError("--do_eval requires a validation dataset")
524
        eval_examples = raw_datasets["validation"]
525
        if data_args.max_eval_samples is not None:
526
            # We will select sample from whole data
527
528
            max_eval_samples = min(len(eval_examples), data_args.max_eval_samples)
            eval_examples = eval_examples.select(range(max_eval_samples))
529
        # Validation Feature Creation
530
531
532
533
534
535
536
537
538
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_examples.map(
                prepare_validation_features,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
539
        if data_args.max_eval_samples is not None:
540
            # During Feature creation dataset samples might increase, we will select required samples again
541
542
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
Sylvain Gugger's avatar
Sylvain Gugger committed
543

544
    if training_args.do_predict:
545
        if "test" not in raw_datasets:
546
            raise ValueError("--do_predict requires a test dataset")
547
        predict_examples = raw_datasets["test"]
548
        if data_args.max_predict_samples is not None:
549
            # We will select sample from whole data
550
551
            predict_examples = predict_examples.select(range(data_args.max_predict_samples))
        # Predict Feature Creation
552
553
554
555
556
557
558
559
560
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_examples.map(
                prepare_validation_features,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
561
        if data_args.max_predict_samples is not None:
562
            # During Feature creation dataset samples might increase, we will select required samples again
563
564
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
565

Sylvain Gugger's avatar
Sylvain Gugger committed
566
567
568
    # Data collator
    # We have already padded to max length if the corresponding flag is True, otherwise we need to pad in the data
    # collator.
569
570
571
572
573
    data_collator = (
        default_data_collator
        if data_args.pad_to_max_length
        else DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None)
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
574
575

    # Post-processing:
576
    def post_processing_function(examples, features, predictions, stage="eval"):
Sylvain Gugger's avatar
Sylvain Gugger committed
577
578
579
580
581
582
583
584
585
586
        # Post-processing: we match the start logits and end logits to answers in the original context.
        predictions = postprocess_qa_predictions(
            examples=examples,
            features=features,
            predictions=predictions,
            version_2_with_negative=data_args.version_2_with_negative,
            n_best_size=data_args.n_best_size,
            max_answer_length=data_args.max_answer_length,
            null_score_diff_threshold=data_args.null_score_diff_threshold,
            output_dir=training_args.output_dir,
587
            log_level=log_level,
588
            prefix=stage,
Sylvain Gugger's avatar
Sylvain Gugger committed
589
590
591
592
        )
        # Format the result to the format the metric expects.
        if data_args.version_2_with_negative:
            formatted_predictions = [
593
                {"id": str(k), "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items()
Sylvain Gugger's avatar
Sylvain Gugger committed
594
595
            ]
        else:
596
            formatted_predictions = [{"id": str(k), "prediction_text": v} for k, v in predictions.items()]
597

598
        references = [{"id": str(ex["id"]), "answers": ex[answer_column_name]} for ex in examples]
Sylvain Gugger's avatar
Sylvain Gugger committed
599
600
        return EvalPrediction(predictions=formatted_predictions, label_ids=references)

601
    metric = evaluate.load("squad_v2" if data_args.version_2_with_negative else "squad")
Sylvain Gugger's avatar
Sylvain Gugger committed
602
603
604
605
606
607
608
609
610

    def compute_metrics(p: EvalPrediction):
        return metric.compute(predictions=p.predictions, references=p.label_ids)

    # Initialize our Trainer
    trainer = QuestionAnsweringTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
611
        eval_dataset=eval_dataset if training_args.do_eval else None,
612
        eval_examples=eval_examples if training_args.do_eval else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
613
614
615
616
617
618
619
620
        tokenizer=tokenizer,
        data_collator=data_collator,
        post_process_function=post_processing_function,
        compute_metrics=compute_metrics,
    )

    # Training
    if training_args.do_train:
621
622
623
624
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
625
626
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
Sylvain Gugger's avatar
Sylvain Gugger committed
627
628
        trainer.save_model()  # Saves the tokenizer too for easy upload

629
        metrics = train_result.metrics
630
631
632
633
634
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

635
636
637
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
638

Sylvain Gugger's avatar
Sylvain Gugger committed
639
640
641
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
642
        metrics = trainer.evaluate()
Sylvain Gugger's avatar
Sylvain Gugger committed
643

644
645
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
Sylvain Gugger's avatar
Sylvain Gugger committed
646

647
648
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
Sylvain Gugger's avatar
Sylvain Gugger committed
649

650
651
652
    # Prediction
    if training_args.do_predict:
        logger.info("*** Predict ***")
653
        results = trainer.predict(predict_dataset, predict_examples)
654
655
        metrics = results.metrics

656
657
658
659
        max_predict_samples = (
            data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
        )
        metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
660

661
662
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
663

664
665
666
667
668
669
670
671
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "question-answering"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
672

673
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
674
        trainer.push_to_hub(**kwargs)
675
676
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
677

Sylvain Gugger's avatar
Sylvain Gugger committed
678
679
680
681
682
683
684
685

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()