test_pipelines_image_classification.py 11 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

17
18
19
from transformers import (
    MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
    TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
20
    PreTrainedTokenizerBase,
21
    is_torch_available,
22
23
    is_vision_available,
)
24
from transformers.pipelines import ImageClassificationPipeline, pipeline
25
from transformers.testing_utils import (
26
    is_pipeline_test,
27
28
29
    nested_simplify,
    require_tf,
    require_torch,
30
    require_torch_or_tf,
31
    require_vision,
32
    slow,
33
34
)

35
from .test_pipelines_common import ANY
36
37


38
39
40
if is_torch_available():
    import torch

41
42
43
44
45
46
47
48
49
50
if is_vision_available():
    from PIL import Image
else:

    class Image:
        @staticmethod
        def open(*args, **kwargs):
            pass


51
@is_pipeline_test
52
@require_torch_or_tf
53
@require_vision
54
class ImageClassificationPipelineTests(unittest.TestCase):
55
    model_mapping = MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
56
    tf_model_mapping = TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
57

58
    def get_test_pipeline(self, model, tokenizer, processor):
Yih-Dar's avatar
Yih-Dar committed
59
        image_classifier = ImageClassificationPipeline(model=model, image_processor=processor, top_k=2)
60
61
62
63
64
65
66
        examples = [
            Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
            "http://images.cocodataset.org/val2017/000000039769.jpg",
        ]
        return image_classifier, examples

    def run_pipeline_test(self, image_classifier, examples):
67
68
69
70
71
72
73
74
75
76
77
78
        outputs = image_classifier("./tests/fixtures/tests_samples/COCO/000000039769.png")

        self.assertEqual(
            outputs,
            [
                {"score": ANY(float), "label": ANY(str)},
                {"score": ANY(float), "label": ANY(str)},
            ],
        )

        import datasets

79
80
81
        # we use revision="refs/pr/1" until the PR is merged
        # https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1
        dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1")
82
83
84
85

        # Accepts URL + PIL.Image + lists
        outputs = image_classifier(
            [
NielsRogge's avatar
NielsRogge committed
86
                Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
87
88
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                # RGBA
89
                dataset[0]["image"],
90
                # LA
91
                dataset[1]["image"],
92
                # L
93
                dataset[2]["image"],
NielsRogge's avatar
NielsRogge committed
94
            ]
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        )
        self.assertEqual(
            outputs,
            [
                [
                    {"score": ANY(float), "label": ANY(str)},
                    {"score": ANY(float), "label": ANY(str)},
                ],
                [
                    {"score": ANY(float), "label": ANY(str)},
                    {"score": ANY(float), "label": ANY(str)},
                ],
                [
                    {"score": ANY(float), "label": ANY(str)},
                    {"score": ANY(float), "label": ANY(str)},
                ],
                [
                    {"score": ANY(float), "label": ANY(str)},
                    {"score": ANY(float), "label": ANY(str)},
                ],
                [
                    {"score": ANY(float), "label": ANY(str)},
                    {"score": ANY(float), "label": ANY(str)},
                ],
            ],
        )

    @require_torch
    def test_small_model_pt(self):
Lysandre Debut's avatar
Lysandre Debut committed
124
        small_model = "hf-internal-testing/tiny-random-vit"
125
126
127
128
129
        image_classifier = pipeline("image-classification", model=small_model)

        outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
Lysandre Debut's avatar
Lysandre Debut committed
130
            [{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
131
132
133
134
135
136
137
138
139
140
141
142
        )

        outputs = image_classifier(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
            top_k=2,
        )
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
Lysandre Debut's avatar
Lysandre Debut committed
143
144
                [{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
                [{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
145
146
147
148
149
            ],
        )

    @require_tf
    def test_small_model_tf(self):
Lysandre Debut's avatar
Lysandre Debut committed
150
        small_model = "hf-internal-testing/tiny-random-vit"
151
        image_classifier = pipeline("image-classification", model=small_model, framework="tf")
152
153
154
155

        outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
Lysandre Debut's avatar
Lysandre Debut committed
156
            [{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
157
158
159
160
161
162
163
164
165
166
167
168
        )

        outputs = image_classifier(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
            top_k=2,
        )
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
Lysandre Debut's avatar
Lysandre Debut committed
169
170
                [{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
                [{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
171
172
            ],
        )
173
174

    def test_custom_tokenizer(self):
175
        tokenizer = PreTrainedTokenizerBase()
176
177

        # Assert that the pipeline can be initialized with a feature extractor that is not in any mapping
Lysandre Debut's avatar
Lysandre Debut committed
178
179
180
        image_classifier = pipeline(
            "image-classification", model="hf-internal-testing/tiny-random-vit", tokenizer=tokenizer
        )
181
182

        self.assertIs(image_classifier.tokenizer, tokenizer)
183

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    @require_torch
    def test_torch_float16_pipeline(self):
        image_classifier = pipeline(
            "image-classification", model="hf-internal-testing/tiny-random-vit", torch_dtype=torch.float16
        )
        outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")

        self.assertEqual(
            nested_simplify(outputs, decimals=3),
            [{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
        )

    @require_torch
    def test_torch_bfloat16_pipeline(self):
        image_classifier = pipeline(
            "image-classification", model="hf-internal-testing/tiny-random-vit", torch_dtype=torch.bfloat16
        )
        outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")

        self.assertEqual(
            nested_simplify(outputs, decimals=3),
            [{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
        )

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    @slow
    @require_torch
    def test_perceiver(self):
        # Perceiver is not tested by `run_pipeline_test` properly.
        # That is because the type of feature_extractor and model preprocessor need to be kept
        # in sync, which is not the case in the current design
        image_classifier = pipeline("image-classification", model="deepmind/vision-perceiver-conv")
        outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {"score": 0.4385, "label": "tabby, tabby cat"},
                {"score": 0.321, "label": "tiger cat"},
                {"score": 0.0502, "label": "Egyptian cat"},
                {"score": 0.0137, "label": "crib, cot"},
                {"score": 0.007, "label": "radiator"},
            ],
        )

        image_classifier = pipeline("image-classification", model="deepmind/vision-perceiver-fourier")
        outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {"score": 0.5658, "label": "tabby, tabby cat"},
                {"score": 0.1309, "label": "tiger cat"},
                {"score": 0.0722, "label": "Egyptian cat"},
                {"score": 0.0707, "label": "remote control, remote"},
                {"score": 0.0082, "label": "computer keyboard, keypad"},
            ],
        )

        image_classifier = pipeline("image-classification", model="deepmind/vision-perceiver-learned")
        outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {"score": 0.3022, "label": "tabby, tabby cat"},
                {"score": 0.2362, "label": "Egyptian cat"},
                {"score": 0.1856, "label": "tiger cat"},
                {"score": 0.0324, "label": "remote control, remote"},
                {"score": 0.0096, "label": "quilt, comforter, comfort, puff"},
            ],
        )
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

    @slow
    @require_torch
    def test_multilabel_classification(self):
        small_model = "hf-internal-testing/tiny-random-vit"

        # Sigmoid is applied for multi-label classification
        image_classifier = pipeline("image-classification", model=small_model)
        image_classifier.model.config.problem_type = "multi_label_classification"

        outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [{"label": "LABEL_1", "score": 0.5356}, {"label": "LABEL_0", "score": 0.4612}],
        )

        outputs = image_classifier(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ]
        )
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [{"label": "LABEL_1", "score": 0.5356}, {"label": "LABEL_0", "score": 0.4612}],
                [{"label": "LABEL_1", "score": 0.5356}, {"label": "LABEL_0", "score": 0.4612}],
            ],
        )

    @slow
    @require_torch
    def test_function_to_apply(self):
        small_model = "hf-internal-testing/tiny-random-vit"

        # Sigmoid is applied for multi-label classification
        image_classifier = pipeline("image-classification", model=small_model)

        outputs = image_classifier(
            "http://images.cocodataset.org/val2017/000000039769.jpg",
            function_to_apply="sigmoid",
        )
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [{"label": "LABEL_1", "score": 0.5356}, {"label": "LABEL_0", "score": 0.4612}],
        )